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Satisfiability Problems

Boolean Satisfiability Problem (SAT): 

• Determine whether there exists an assignment that can satisfy a Boolean formula.

Example: 
𝑋1 ∨ ¬𝑋2 ∧ 𝑋1 ∨ 𝑋3 ∧ (¬𝑋1 ∨ 𝑋2 ∨ 𝑋3)

A satisfying assignment
𝑋1 = 0, 𝑋2 = 0, 𝑋3 = 1



Satisfiability Problems

Boolean Satisfiability Problem (SAT): 

• Determine whether there exists an assignment that can satisfy a Boolean formula.

Sharp Satisfiability Problem (#SAT, or model counting):

• Count the number of all satisfying assignments for a Boolean formula

Example: 
𝑋1 ∨ ¬𝑋2 ∧ 𝑋1 ∨ 𝑋3 ∧ (¬𝑋1 ∨ 𝑋2 ∨ 𝑋3)

All satisfying assignments: 
𝑋1 = 0, 𝑋2 = 0, 𝑋3 = 1
𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 1
𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0
𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 1



Factor Graph Formulation

where 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) denote a possible assignment, 𝒙𝑎 denote the corresponding assignment in 
clause 𝑎, 𝑓𝑎 𝒙𝑎 = 1 if 𝒙𝑎 satisfies clause 𝑎 else 𝑓𝑎 𝒙𝑎 = 0, 𝑍 is the partition function, representing 
the number of all satisfying assignments.

We can consider 𝑝(𝒙) as a probability measure on the solution space that has a uniform distribution 
for all satisfying assignments and zero probability for unsatisfying ones.
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Traditional Inference Algorithm

Belief Propagation (BP, in log space):

• Marginal inference:

• Partition function estimation (Bethe approximation):

Drawbacks: inaccurate, not flexible, hard to converge… 
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NSNet’s Framework

Serve as a neural generalization of BP

SAT:

• Perform marginal inference (rather than predicting a possible assignment directly)

• Obtain a satisfying assignment by rounding and executing a local search

#SAT:

• Estimate the partition function



NSNet’s Framework

Graph representation:

𝑋𝑖
1 and 𝑋𝑖

0 denotes variable 𝑋𝑖 takes values 1 and 0 respectively. The solid/dashed line indicates that 
the variable assignment satisfies/dissatisfies the associated clause.

𝑋1 ∨ ¬𝑋2 ∧ 𝑋1 ∨ 𝑋3 ∧ (¬𝑋1 ∨ 𝑋2 ∨ 𝑋3)



NSNet’s Framework

Message passing scheme:

• Clause to variable assignment

• Variable to clause assignment

• Edge embeddings

• Use the same aggregators (summation, LSE) as BP

• Enforce the permutation invariance and the negation equivariance of CNF formulas
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NSNet’s Framework

Readout:

SAT:

#SAT:

Training:

• Using the ground truth marginals and the model counting

• KL divergence loss for SAT and MSE loss for #SAT
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Experiments

SAT

• Solving accuracy of the initial assignments (without local search)

• Compared with BP and the SOTA model NeuroSAT

• Compared with the assignment supervision



Experiments

SAT

• Solving accuracy with local search

• Compared with the SOTA SLS solver with different initialization methods



Experiments

#SAT

• Rooted mean square error (RMSE) and runtime

• Compared with the SOTA solvers ApproxMC3, F2 and the neural baseline BPNN



Thank you!

Email: zli199@cs.mcgill.ca or zhaoyu.li@mila.quebec

Github code: https://github.com/zhaoyu-li/NSNet


