

NSNet: A General Neural Probabilistic Framework for Satisfiability Problems

Zhaoyu Li^{1,2}, Xujie Si^{1,2,3}

¹McGill University, ²Mila – Quebec AI Institute, ³CIFAR AI Research Chair

NeurIPS 2022

Satisfiability Problems

Boolean Satisfiability Problem (SAT):

• Determine whether there exists an assignment that can satisfy a Boolean formula.

Example:

$$(X_1 \lor \neg X_2) \land (X_1 \lor X_3) \land (\neg X_1 \lor X_2 \lor X_3)$$

A satisfying assignment

$$X_1 = 0, \qquad X_2 = 0, \qquad X_3 = 1$$

Satisfiability Problems

Boolean Satisfiability Problem (SAT):

• Determine whether there exists an assignment that can satisfy a Boolean formula.

Sharp Satisfiability Problem (#SAT, or model counting):

• Count the number of all satisfying assignments for a Boolean formula Example:

$$(X_1 \lor \neg X_2) \land (X_1 \lor X_3) \land (\neg X_1 \lor X_2 \lor X_3)$$

All satisfying assignments:

Factor Graph Formulation

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{a=1}^{m} f_a(\mathbf{x}_a) \qquad Z = \sum_{\mathbf{x}} \left(\prod_{a=1}^{m} f_a(\mathbf{x}_a) \right)$$

where $\mathbf{x} = (x_1, x_2, ..., x_n)$ denote a possible assignment, \mathbf{x}_a denote the corresponding assignment in clause a, $f_a(\mathbf{x}_a) = 1$ if \mathbf{x}_a satisfies clause a else $f_a(\mathbf{x}_a) = 0$, Z is the partition function, representing the number of all satisfying assignments.

We can consider p(x) as a probability measure on the solution space that has a uniform distribution for all satisfying assignments and zero probability for unsatisfying ones.

Traditional Inference Algorithm

Belief Propagation (BP, in log space):

$$m_{i \to a}^{(k)}(x_i) = -z_{i \to a}^{(k)} + \sum_{c \in N(i) \setminus a} m_{c \to i}^{(k-1)}(x_i) \qquad m_{a \to i}^{(k)}(x_i) = -z_{a \to i}^{(k)} + \operatorname{LSE}_{x_a \setminus x_i} \left(f_a(x_a) + \sum_{j \in N(a) \setminus i} m_{j \to a}^{(k)}(x_j) \right)$$

• Marginal inference:

$$b_i(x_i) \propto \prod_{a \in N(i)} m_{a \to i}^{(T)}(x_i) \qquad b_a(x_a) \propto f_a(x_a) \prod_{j \in N(a)} m_{j \to a}^{(T)}(x_j)$$

• Partition function estimation (Bethe approximation):

$$\ln Z = -\sum_{a=1}^{m} \sum_{x_a} b_a(x_a) \ln \frac{b_a(x_a)}{f_a(x_a)} + \sum_{i=1}^{n} (N(i) - 1) \sum_{x_i} b_i(x_i) \ln b_i(x_i)$$

Drawbacks: inaccurate, not flexible, hard to converge...

Serve as a neural generalization of BP

SAT:

- Perform marginal inference (rather than predicting a possible assignment directly)
- Obtain a satisfying assignment by **rounding** and **executing a local search** #SAT:
- Estimate the partition function

Graph representation:

 X_i^1 and X_i^0 denotes variable X_i takes values 1 and 0 respectively. The solid/dashed line indicates that the variable assignment satisfies/dissatisfies the associated clause.

Message passing scheme:

• Clause to variable assignment

$$\widetilde{m}_{i \to a}^{(k)}(x_i) = \mathrm{MLP}\left(\sum_{c \in N(i) \setminus a} m_{c \to i}^{(k-1)}(x_i)\right) \qquad m_{i \to a}^{(k)}(x_i) = \mathrm{MLP}\left(\widetilde{m}_{i \to a}^{(k)}(x_i), \ \widetilde{m}_{i \to a}^{(k)}(1-x_i)\right)$$

• Variable to clause assignment

$$m_{a \to i}^{(k)}(x_i) = \mathsf{MLP}\left(\mathsf{LSE}_{x_a^* \setminus x_i}\left(\sum_{j \in N(a) \setminus i} m_{j \to a}^{(k)}(x_j)\right)\right)$$

- Edge embeddings
- Use the same aggregators (summation, LSE) as BP
- Enforce the permutation invariance and the negation equivariance of CNF formulas

Readout:

SAT:

$$\widetilde{b}_{i}(x_{i}) = \mathrm{MLP}\left(\sum_{a \in N(i)} m_{a \to i}^{(T)}(x_{i})\right)$$

 $[b_i(1), b_i(0)] = \operatorname{softmax} \left[\widetilde{b_i}(1), \widetilde{b_i}(0) \right]$

#SAT:

$$\widetilde{b_a}(x_a) = \mathsf{MLP}\left(\sum_{j \in N(a)} m_{j \to a}^{(T)}(x_j)\right) \qquad b_a(x_a) = \widetilde{b_a}(x_a) - \mathsf{LSE}_{x_a}\left(\widetilde{b_a}(x_a)\right)$$
$$\ln Z = -\sum_{a=1}^m \sum_{x_a} b_a(x_a) \ln b_a(x_a) + \sum_{i=1}^n (N(i) - 1) \sum_{x_i} b_i(x_i) \ln b_i(x_i)$$

Training:

- Using the ground truth marginals and the model counting
- KL divergence loss for SAT and MSE loss for #SAT

Experiments

SAT

- Solving accuracy of the initial assignments (without local search)
- Compared with BP and the SOTA model NeuroSAT
- Compared with the assignment supervision

Supervision	Method	Same Distribution				Larger Distribution			
		SR	3-SAT	CA	Total	SR	3-SAT	CA	Total
N/A	BP	49.65	51.43	36.45	45.84	5.97	7.18	6.59	6.58
Assignment	NeuroSAT NSNet	44.16 39.62	43.74 57.63	35.37 47.20	41.09 48.15	1.60 3.37	2.52 8.13	1.64 3.61	1.92 5.03
Marginal	NeuroSAT NSNet	47.77 63.16	48.60 63.52	50.97 56.30	49.11 60.99	1.99 9.13	3.18 12.07	5.61 8.08	3.59 9.76

Table 1: Solving accuracy (%) of the initial assignments on the synthetic datasets.

Experiments

SAT

- Solving accuracy with local search
- Compared with the SOTA SLS solver with different initialization methods

Mathad	Larger Distribution						
Ivietiiou	SR	3-SAT	CA	Total			
Sparrow	8.77 ± 0.15	11.48 ± 0.26	54.25 ± 0.23	24.83 ± 0.08			
BP-Sparrow	27.76 ± 0.20	35.30 ± 0.31	84.89 ± 0.19	49.32 ± 0.11			
NeuroSAT-Sparrow	22.04 ± 0.30	29.03 ± 0.30	83.64 ± 0.22	44.90 ± 0.18			
NSNet-Sparrow	$\textbf{29.66} \pm \textbf{0.15}$	$\textbf{37.24} \pm \textbf{0.18}$	$\textbf{86.13} \pm \textbf{0.21}$	$\textbf{51.01} \pm \textbf{0.11}$			

Table 3: Solving accuracy (%) for Sparrow with different initializations on the synthetic datasets.

Experiments

#SAT

- Rooted mean square error (RMSE) and runtime
- Compared with the SOTA solvers ApproxMC3, F2 and the neural baseline BPNN

Table 4: RMSE and average runtime for each solver on the SATLIB benchmark.

Mothod	Metric			
Method	RMSE	Runtime (s)		
ApproxMC3	0.05	13.05		
F2	2.36	27.79		
NSNet	1.71	< 0.01		

Figure 3: (Left) RMSE between estimated log countings and ground truth for each solver on the BIRD benchmark. (Right) Cactus plots of runtime for each solver on the BIRD benchmark.

Thank you!

Email: zli199@cs.mcgill.ca or zhaoyu.li@mila.quebec Github code: https://github.com/zhaoyu-li/NSNet