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Introduction

(Group) transformation invariances are present in many
real-world problems. E.g.,

Image classification is usually invariant to rotation/flip/color
transformation.
Syntax parsing is invariant to exchange of noun phrases in a
sentence.

Data augmentation is one commonly used technique.

Add the transformed data into the training set.
Trains a model on the augmented data.

How does data augmentation perform theoretically?
What is the optimal algorithm in terms of sample complexity under

transformation invariances?
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Main results

Invariantly realizable setting: ∃h∗ ∈ H s.t. h∗ can correctly
classify not only the natural data but also the transformed
data.

DA helps but is not optimal. The sample complexity of DA is
characterized by VCao(H,G).
The optimal sample complexity is characterized by VCo(H,G).

Relaxed realizable setting: ∃h∗ ∈ H such h∗ has zero error
over the support of the data distribution.

DA can hurt. Any algorithm not distinguishing the original
data from the transformed data hurt. The optimal sample
complexity of this family is characterized by µ(H,G).
The optimal sample complexity is characterized by
VCao(H,G).

Agnostic setting

The optimal sample complexity is characterized by
VCao(H,G).
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An example of DA hurts

The natural data only has upright dogs and upside-down cats or
only has upright cats and upside-down dogs.

Distinguishing between original and transformed data is important!
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Come to our poster for more results!


