

Learning Generalizable Models for Vehicle Routing Problems via Knowledge Distillation

Jieyi Bi^{1,†}, Yining Ma^{2,†}, Jiahai Wang^{1,*}, Zhiguang Cao^{3,*}, Jinbiao Chen¹, Yuan Sun⁴, and Yeow Meng Chee²

¹School of Computer Science and Engineering, Sun Yat-sen University
²National University of Singapore
³Singapore Institute of Manufacturing Technology, A*STAR
⁴University of Melbourne

[†]Equally contributed; ^{*} Jiahai Wang and Zhiguang Cao are the corresponding authors.

Outlines

Introduction & Motivation

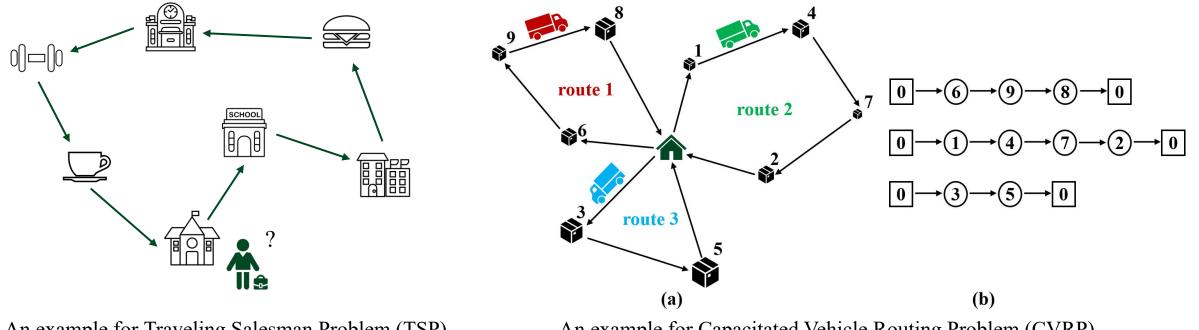
Methodology

Experimental results

Conclusion & Future work

1. Introduction

- Vehicle Routing Problem (VRP) is a class of NP-hard combinatorial optimization problems.
- Two representative VRPs: TSP and CVRP



An example for Traveling Salesman Problem (TSP)

An example for Capacitated Vehicle Routing Problem (CVRP)

PROBLEM DEFINITION: We define VRPs over a complete graph $G = \{V, E\}$, where $v_i \in V$ represents the (customer) node, $e(v_i, v_i) \in E$ represents the edge between two nodes. $C[e(v_i, v_i)]$ represents the cost (we use length in this paper) of the edge. By referring tour τ (a.k.a. solution) to a permutation of nodes in V, the objective is usually to find the optimal tour $\tau *$ with the least total cost (length) over a finite search space S containing all possible tours. $\tau^* =$

$$\underset{\tau' \in \mathcal{S}}{\operatorname{arg\,min}} L(\tau'|\mathcal{G}) = \underset{\tau' \in \mathcal{S}}{\operatorname{arg\,min}} \sum_{e(v_i, v_j) \in \tau'} C\left[e(v_i, v_j)\right]$$

• Various **practical applications**: freight delivery, last-mile logistics, ride-hailing and etc.

[1] Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, et. al.. Efficiently solving the practical vehicle routing problem: A novel joint learning approach. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 3054–3063, 2020.

November 26, 2022

1. Motivation

- Recent neural methods for vehicle routing problems always train and test the deep models on the same instance distribution (i.e., uniform).
- **Cross-distribution generalization issue:** when the learned policy (trained on uniform distribution) is applied to infer the out-of-distribution (OoD) instances, the solution quality is usually low.

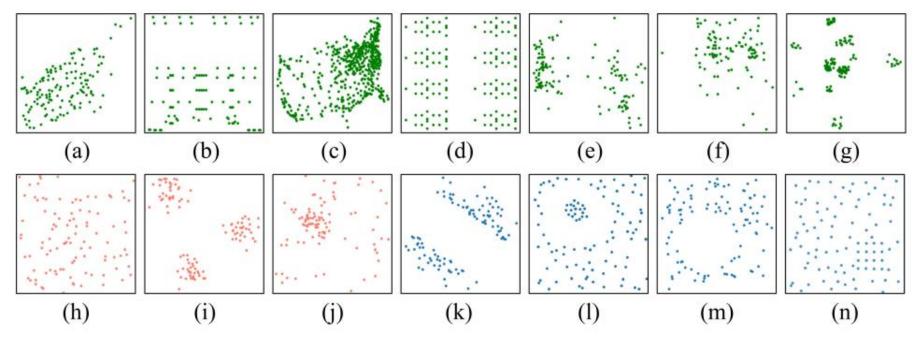
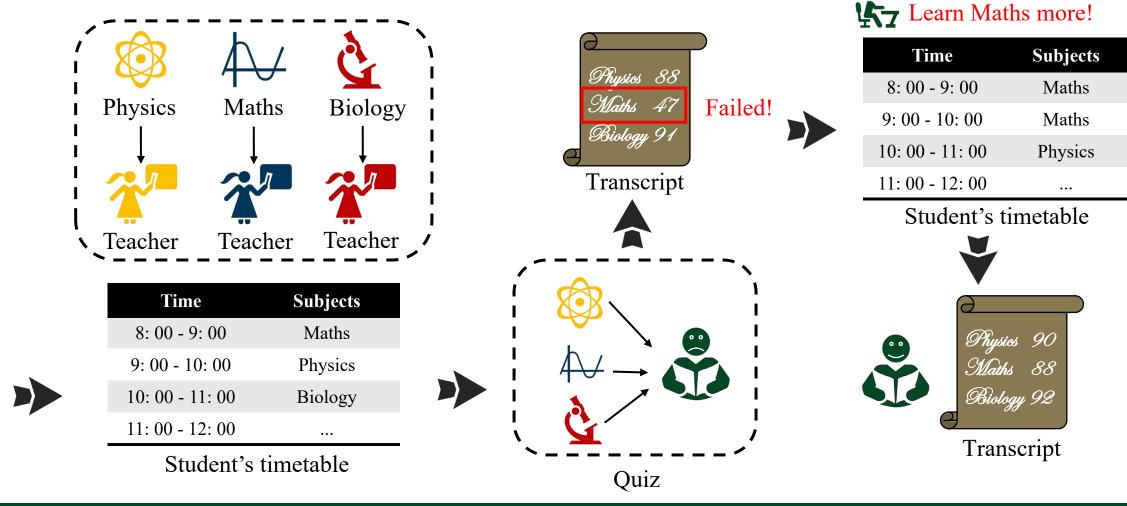


Figure 1: VRP instances following various distributions from the literature: (a) gr137, (b) lin105, (c) att532, (d) pr136, (e) X-n125-k30, (f) bier127, (g) Tai150d, (h) Uniform, (i) Cluster, (j) Mixed, (k) Expansion, (l) Implosion, (m) Explosion, (n) Grid, where instances (a)-(g) are from TSPLIB and CVRPLIB. In this paper, we consider instances following distributions (h)-(j) for training and other unseen distributions (k)-(n), as well as unseen benchmark datasets for testing.

1. Motivation

• To tackle the cross-distribution generalization concerns, we bring the knowledge distillation to this field and propose an Adaptive Multi-Distribution Knowledge Distillation scheme for learning more generalizable deep models.



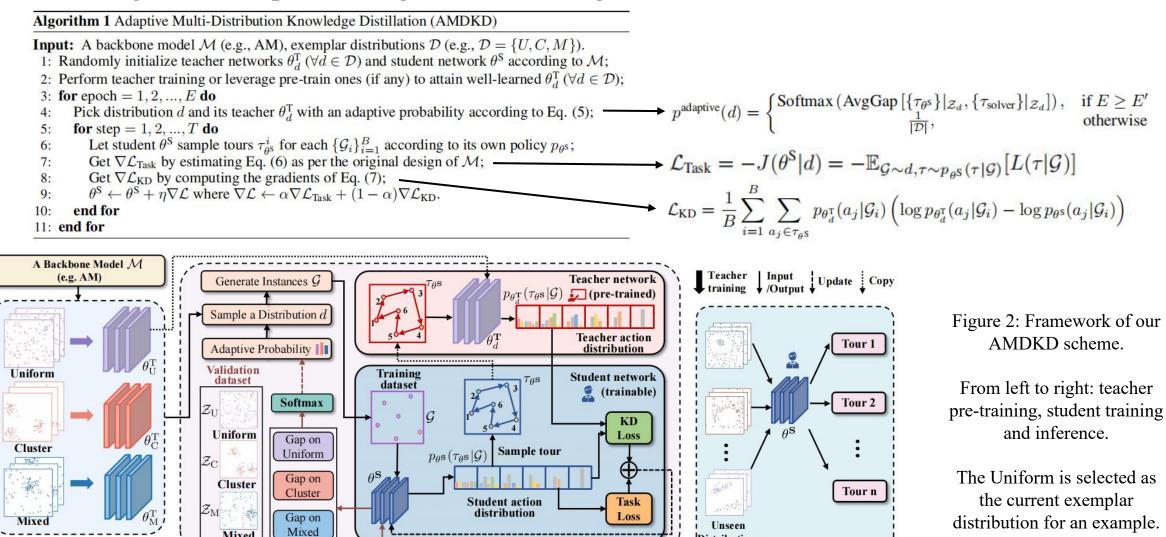
November 26, 2022

Student

2. Methodology

Three stages: teacher pre-training, student training and inference. •

Student Training



Distributions

Inference

November 2<u>6, 2022</u>

Exemplar Distributions & Teacher Pre-training Mixed

• Effectiveness analysis of AMDKD

Table 1: Distillation effectiveness of AMDKD on three exemplar distributions.

		Size	n = 20				n = 50				n = 100			
	Model	(M)	GU	G _C	G _M	Avg.	GU	G _C	G _M	Avg.	GU	GC	G _M	Avg.
TSP	AM(U)	0.68	0.09%	0.26%	0.19%	0.18%	0.59%	2.24%	1.36%	1.39%	2.10%	7.49%	4.06%	4.55%
	AM(C)	0.68	0.17%	0.10%	0.27%	0.18%	1.41%	0.80%	2.14%	1.45%	3.76%	6.97%	4.39%	5.04%
	AM(M)	0.68	0.15%	0.16%	0.13%	0.15%	1.19%	1.71%	0.87%	1.26%	3.08%	5.65%	2.55%	3.76%
	AMDKD-AM	0.26	0.02%	0.06%	0.05%	0.04%	0.25%	1.64%	0.86%	0.91%	1.21%	5.63%	3.55%	3.46%
	POMO(U)	1.20	0.00%	0.01%	0.01%	0.01%	0.04%	0.42%	0.21%	0.22%	0.17%	1.97%	0.92%	1.02%
	POMO(C)	1.20	0.00%	0.00%	0.01%	0.00%	0.09%	0.07%	0.21%	0.12%	0.41%	0.29%	0.83%	0.51%
	POMO(M)	1.20	0.00%	0.01%	0.00%	0.00%	0.08%	0.17%	0.08%	0.11%	0.77%	1.17%	0.34%	0.76%
	AMDKD-POMO	0.49	0.00%	0.00%	0.00%	0.00%	0.05%	0.05%	0.09%	0.06%	0.34%	0.35%	0.41%	0.37%
CVRP	AM(U)	0.68	1.98%	1.99%	1.98%	1.98%	2.53%	4.33%	2.99%	3.28%	3.10%	9.87%	4.57%	5.85%
	AM(C)	0.68	1.62%	1.43%	1.74%	1.60%	3.08%	2.75%	3.35%	3.06%	4.27%	3.89%	4.93%	4.36%
	AM(M)	0.68	2.09%	2.19%	2.05%	2.11%	2.74%	3.17%	2.31%	2.74%	3.95%	6.26%	3.41%	4.54%
	AMDKD-AM	0.26	0.53%	0.59%	0.64%	0.59%	1.61%	2.66%	1.92%	2.07%	2.08%	5.06%	3.01%	3.38%
	POMO(U)	1.20	0.36%	0.49%	0.51%	0.45%	0.80%	1.53%	1.07%	1.13%	0.95%	2.34%	1.31%	1.53%
	POMO(C)	1.20	0.41%	0.40%	0.54%	0.45%	1.16%	0.93%	1.07%	1.05%	0.93%	1.28%	1.21%	1.14%
	POMO(M)	1.20	0.36%	0.51%	0.40%	0.42%	1.22%	1.34%	0.85%	1.14%	1.89%	2.07%	0.96%	1.64%
	AMDKD-POMO	0.49	0.35%	0.40%	0.41%	0.39%	0.81%	0.97%	0.89%	0.89%	1.06%	1.36%	0.99%	1.13%

Note: Unless otherwise stated, the gaps are computed w.r.t. the strong traditional solvers Gurobi [5] (for TSP) and LKH [4] (for CVRP).

- 1. reduce the size of the teacher model from 0.68 to 0.26 M (a 61.8% reduction) for AM and from 1.20 to 0.49 M (a 59.2% reduction) for POMO;
- 2. improve overall performance for both TSP and CVRP on all the three sizes.

• Generalization analysis of AMDKD

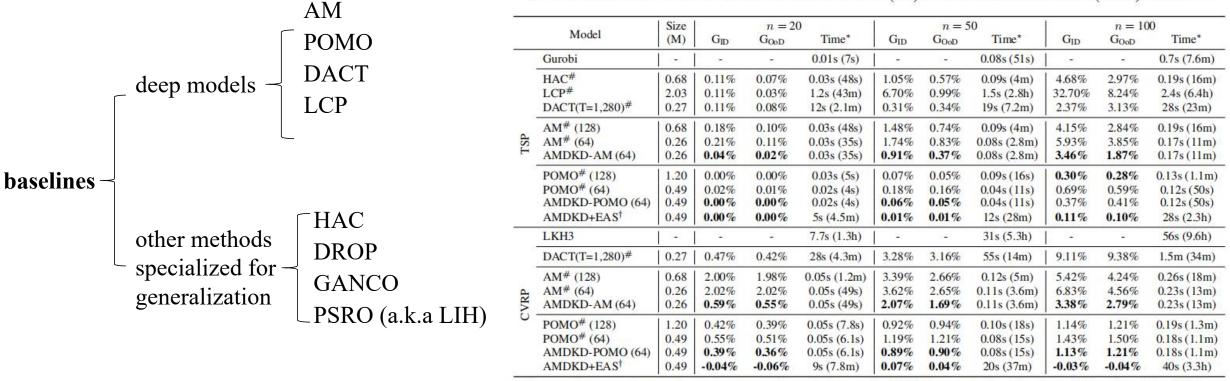


Table 2: Generalization on unseen in-distribution (ID) and out-of-distribution (OoD) instances.

* We report the average time to solve one instance, and the total time to solve 10,000 instances in (·) with batch parallelism allowed (one GPU).

The corresponding model is trained on a mixed training dataset that contains instances from all the three exemplar distributions.

[†] For EAS, we adopt its EAS-lay version (T=100) for demonstration purpose.

Table 3: Generalization performance on selected instances ($100 \le n \le 200$) from benchmark datasets.

	PSRO	AM (128)	GANCO	HAC	AM#(128)	AMDKD-AM (64)	POMO (128)	DROP	POMO#(128)	AMDKD-POMO (64)	AMD KD+EAS
TSPLIB	4.47%	42.63%	4.87%	6.06%	17.60%	3.53 %	29.73%	10.79%	0.87%	1.08%	0.74%
CVRPLIB	-	29.36%	-	-	13.88%	7.43%	14.19%	8.67%	6.80%	4.38%	1.26%

cross-distribution generalization issue

exhibit competitive performance in generalizing to other unseen out-of-distribution instances

consume less computational resources

model-agnostic; generic for all deep models

1) generalizing AMDKD for different/larger problem sizes;

Future work

2) considering the improvement models like DACT as the backbone;

3) performing online distillation to jointly and efficiently train the teachers and the student models;4) assessing the impact of the quality of the validation dataset on the distillation;

5) enhancing the interpretability of AMDKD.

Learning Generalizable Models for Vehicle Routing Problems via Knowledge Distillation

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee

bijy6@mail2.sysu.edu.cn, yiningma@u.nus.edu wangjiah@mail.sysu.edu.cn, zhiguangcao@outlook.com chenjb69@mail2.sysu.edu.cn, yuan.sun@unimelb.edu.au, ymchee@nus.edu.sg

This work is supported in part by the National Key R&D Program of China (2018AAA0101203), the National Natural Science Foundation of China (62072483), and the Guangdong Basic and Applied Basic Research Foundation (2022A1515011690, 2021A1515012298); in part by the Agency for Science Technology and Research Career Development Fund (C222812027).