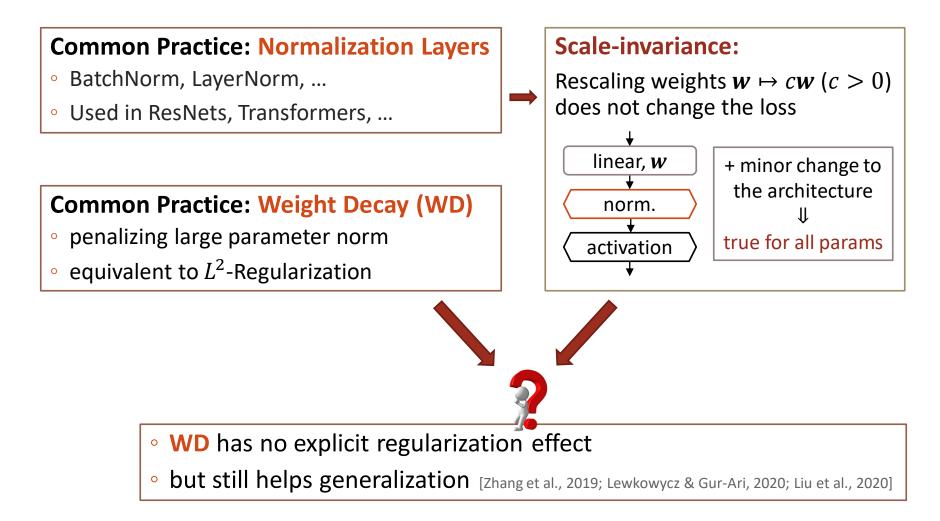


Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction

Kaifeng Lyu, Zhiyuan Li, Sanjeev Arora

Princeton University

Normalization and Weight Decay



Gradient Descent with WD

Goal: Improve mathematical understanding of how normalization + WD improves generalization

Our Setup

• (full-batch) GD with WD

$$\boldsymbol{w}_{t+1} \leftarrow (1 - \eta \lambda) \boldsymbol{w}_t - \eta \nabla \mathcal{L}(\boldsymbol{w}_t)$$

• Scale-invariant loss wrt all params:

 $\mathcal{L}(cw) = \mathcal{L}(w)$, for all c > 0

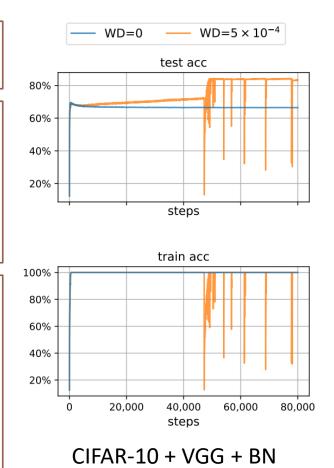
Motivating Phenomenon

Case 1: With normalization + WD:

- the net continues to evolve even after train acc = 100%
- test acc improves a lot
- 69.1% \rightarrow 72.0%, and \rightarrow 84.3% after destabilization

Case 2: Removing either normalization or WD:

• test acc **does not change much** after train acc = 100%

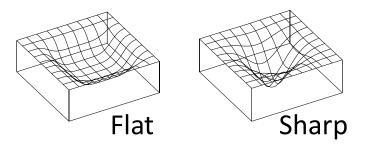


(no data augmentation)

Our Theory: Sharpness Reduction

Long-held belief: flatter minima generalize better

• [Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Neyshabur et al., 2017]



Spherical Sharpness:

- A sharpness measure of the solution
- = the top eigenvalue of $\nabla^2 \mathcal{L}$ after projecting the weights to \mathbb{S}^{d-1}



WD=0

 $WD = 5 \times 10^{-4}$

Sharpness Reduction Phenomenon: In the late phase of training, the spherical sharpness drops and test acc rises.

Our Theory: Sharpness-Reduction Flow

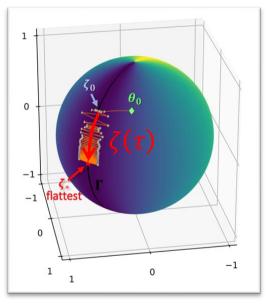
Our Setup

- Assume a manifold Γ of minima on \mathbb{S}^{d-1}
- Start our analysis near the manifold
 - Use previous analysis for loss convergence [Li et al., 2022]

Theorem 1. Eventually enters the **Edge of Stability** regime $\lambda_1 (\nabla^2 \mathcal{L}(\boldsymbol{w}_t)) \approx 2/\eta$

Loss no longer decreases monotonically.

Theorem 2. The projected parameter $\boldsymbol{\theta}_t \coloneqq \frac{w_t}{\|w_t\|}$ 1. oscillates around the manifold 2. moves along a continuous flow on the manifold **Sharpness-Reduction Flow:** $\frac{d\zeta(\tau)}{d\tau} = -\frac{2\nabla_{\Gamma}\log\lambda_1(\nabla^2 \mathcal{L}(\zeta))}{4+\|\nabla_{\Gamma}\log\lambda_1(\nabla^2 \mathcal{L}(\zeta))\|^2}$ ∇_{Γ} : Projection of gradient to the tangent space of Γ



Summary

We show that the interplay of normalization and WD results in a sharpness reduction flow that can promote generalization.

See our paper for more:

- 1. Understanding the Edge of Stability Phenomenon [Cohen et al., 2021]
- 2. Connecting and generalizing our results to adaptive learning rate methods (e.g., RMSprop)
- 3. Extensive empirical validation of sharpness reduction on CIFAR-10