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Compositional Generalization: the capability to recognize or generate novel
combinations of seen elementary concepts.

/ Human intelligence
X Deep learning system

Related to other generalization problems:
+ Domain generalization/OOD (unusual combinations, €.g. a cow on a beach)

« Few-shot/zero-shot (most new samples are new combinations)
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* Human encode complex observations as combinations of primitive
representations, aka Compositional representation.
- Represent an object with attributes — color, shape, location ...

- Languages: a sentence — words following grammars

= A common hypothesis: compositional representations ecnable
compositional generalization.

= We evaluate the above hypothesis on unsupervised learning algorithms

« Disentangled representation learning
- Emergent language learning
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" Qur criterion: how easy to transfer the unsupervised learned representation to
downstream tasks with good compositional generalization.

= Evaluation protocol
Train set

Y o - Supervised learning from Nygp¢; labeled samples Test set
{ E : (Nlabel << Ntrain) A {red, trlangle}
| :
|
| - : — [ Task model ] > O {yellow, circle}
AN ) Evaluate || {blue, square}
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u (novel combinations)
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Representation
Unsupervised representation backbone
learning from N¢;.4i, samples (Frozen)
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Experimental Setup AR

= Dataset:
« dSprites and MPI3D-Real
« Train/test split: 1:9

«  With ground truth categorical and continuous factors

= Unsupervised learning algorithms
+ Disentanglement (f-VAE and f-TCVAE)
- Emergent language learning
= Downstream tasks:

 Classification (accuracy) for categorical factors.
« Regression (R2 score) for continuous factors.
- Linear and GBT task heads are tested.
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= Disentanglement:

« “Naive” compositionality

- Latent variables encode independent factors.
* Most unsupervised SoTAs are VAE-based.

= Emergent language Learning
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----------------------------------------------------------------------------
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/" Encoder ," Decoder

 Sequential discrete representations

 Learning through two-agents
communication games.

---------------------------------------------------------------------------------------------------------------------
. .
* *

Dec-LSTM  Listener \‘:




Finding #1: The Bottleneck Latent Variables are Not Better Representations
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* None of compositionality metrics show strong positive correlations with
generalization performance.

* Some disentanglement scores even show negafive correlations.

Dataset: MPI3D-Real

TopSim-MPI3D-Real

TopSim-dSprites

SAP MIG IRS DCI

Acc-post Acc-pre R2-post R2-pre

Acc-latent
Acc-pre
R2-latent

Ranking correlation between disentanglement scores (left) and topographical similarity (right)
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*  When N,pe; 1s small, EL-post generalizes significantly better than other models.

*  When N;pe; 1s large, 0-VAE/0-TCVAE may be close to EL-post but classification or regression
task favors post/pre and linear/GBT heads differently

= When Nip,ip 18 small (5%), EL-post degrades than 0-VAE/O-TCVAE.
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=  We proposed a compositional generalization evaluation protocol for unsupervised representation
learning that emphasizes how easy we can learn simple models for downstream tasks with good
generalization performance given learned representations.

= Interesting findings:
« Bottleneck compositional representations do not work well.
- Compositionality metrics may not imply generalization performance well.

- Emergent language learning can induce representations with stronger compositional
generalization than unsupervised disentanglement learning

Paper: https://arxiv.org/abs/2210.00482

Code: https://github.com/wildphoton/Compositional-Generalization
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