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Motivation

Spectral Clustering (SC)
step 1: construct a similarity matrix
step 2: perform normalized cut [Shi and Malik, 2000]

Limitations of SC
performance heavily relies on the quality of affinity matrix
difficult to do model and hyperparameter selection
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Automated Spectral Clustering

Relative-Eigen-Gap (REG)

reg(L) :=
σk+1(L)− 1

k
∑k

i=1 σi(L)
1
k
∑k

i=1 σi(L) + ε
(1)

L is the laplacian matrix of the affinity matrix A

REG guided search

maximize
(f ,θ)∈F×Θ

reg(L),

subject to L = I − D−1/2AD−1/2, A = fθ(X )
(2)

F is a set of pre-defined functions and Θ is a set of
hyperparameters.
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Automated Spectral Clustering

Table: A few examples of f and its θ for affinity matrix construction

f K-NN ε
-neighborhood

Gaussian
kernel SSC LRR LSR KSSC AASC

θ K ε σ λ λ λ λ, σ σ1, σ2, . . .

SSC: [Elhamifar and Vidal, 2013]; LRR: [Liu et al., 2013]; AASC: [Huang et al., 2012]

AutoSC

maximize
(f ,θ)∈F×Θ

reg(L),

subject to L = I − D−1/2AD−1/2, A = fθ(X )

Solve AutoSC
grid search
Bayesian optimization [Jones et al., 1998]
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AutoSC with better affinity matrix construction method

LSR (least squares representations) with thresholding

minimize
C

1
2‖X − XC‖2F + λ

2‖C‖
2
F (3)

- diag(C) = 0, C ← |C|
- keep only the largest τ elements of each column of C
- A = (C + C>)/2.

KLSR with thresholding

minimize
C

1
2‖φ(X )− φ(X )C‖2F + λ

2‖C‖
2
F (4)

- The post-processing is similar to LSR

Determine τ by AutoSC
Theoretical guarantee of LSR and KLSR (see the paper)
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Numerical Results

AutoSC-BO with KLSR on the first 10 subjects of YaleB
[Kuang-Chih et al., 2005] Face dataset

More numerical results can be found in the paper
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