A Simple Approach to Automated Spectral Clustering

Jicong Fan^{1,2}, Yiheng Tu³, Zhao Zhang⁴, Mingbo Zhao⁵, Haijun Zhang⁶

¹The Chinese University of Hong Kong, Shenzhen
 ²Shenzhen Research Institute of Big Data, Shenzhen
 ³Chinese Academy of Science, Beijing
 ⁴Hefei University of Technology, Hefei
 ⁵Donghua University, Shanghai
 ⁶Harbin Institute of Technology, Shenzhen

- Spectral Clustering (SC)
 - step 1: construct a similarity matrix
 - step 2: perform normalized cut [Shi and Malik, 2000]

- Spectral Clustering (SC)
 - step 1: construct a similarity matrix
 - step 2: perform normalized cut [Shi and Malik, 2000]
- Limitations of SC
 - performance heavily relies on the quality of affinity matrix
 - difficult to do model and hyperparameter selection

• Relative-Eigen-Gap (REG)

$$\operatorname{reg}(\boldsymbol{L}) := \frac{\sigma_{k+1}(\boldsymbol{L}) - \frac{1}{k} \sum_{i=1}^{k} \sigma_i(\boldsymbol{L})}{\frac{1}{k} \sum_{i=1}^{k} \sigma_i(\boldsymbol{L}) + \varepsilon}$$

L is the laplacian matrix of the affinity matrix A

(1)

• Relative-Eigen-Gap (REG)

$$\operatorname{reg}(\boldsymbol{L}) := \frac{\sigma_{k+1}(\boldsymbol{L}) - \frac{1}{k} \sum_{i=1}^{k} \sigma_i(\boldsymbol{L})}{\frac{1}{k} \sum_{i=1}^{k} \sigma_i(\boldsymbol{L}) + \varepsilon}$$

L is the laplacian matrix of the affinity matrix A

REG guided search

maximize reg(
$$\boldsymbol{L}$$
),
 $_{(f,\theta)\in\mathcal{F}\times\Theta}^{(f,\theta)\in\mathcal{F}\times\Theta}$ reg(\boldsymbol{L}),
subject to $\boldsymbol{L} = \boldsymbol{I} - \boldsymbol{D}^{-1/2}\boldsymbol{A}\boldsymbol{D}^{-1/2}, \ \boldsymbol{A} = f_{\theta}(\boldsymbol{X})$

 ${\mathcal F}$ is a set of pre-defined functions and Θ is a set of hyperparameters.

(1)

(2)

Table: A few examples of *f* and its θ for affinity matrix construction

f	K-NN	ϵ -neighborhood	Gaussian kernel	SSC	LRR	LSR	KSSC	AASC
θ	K	ϵ	σ	λ	λ	λ	λ, σ	$\sigma_1, \sigma_2, \ldots$

SSC: [Elhamifar and Vidal, 2013]; LRR: [Liu et al., 2013]; AASC: [Huang et al., 2012]

AutoSC

maximize reg(\boldsymbol{L}), (f, θ) $\in \mathcal{F} \times \Theta$ subject to $\boldsymbol{L} = \boldsymbol{I} - \boldsymbol{D}^{-1/2} \boldsymbol{A} \boldsymbol{D}^{-1/2}, \ \boldsymbol{A} = f_{\theta}(\boldsymbol{X})$ Table: A few examples of *f* and its θ for affinity matrix construction

f	K-NN	ϵ -neighborhood	Gaussian kernel	SSC	LRR	LSR	KSSC	AASC
θ	K	ϵ	σ	λ	λ	λ	λ, σ	$\sigma_1, \sigma_2, \ldots$

SSC: [Elhamifar and Vidal, 2013]; LRR: [Liu et al., 2013]; AASC: [Huang et al., 2012]

AutoSC

maximize reg(\boldsymbol{L}), $_{(f,\theta)\in\mathcal{F}\times\Theta}^{(f,\theta)\in\mathcal{F}\times\Theta}$ subject to $\boldsymbol{L} = \boldsymbol{I} - \boldsymbol{D}^{-1/2}\boldsymbol{A}\boldsymbol{D}^{-1/2}, \ \boldsymbol{A} = f_{\theta}(\boldsymbol{X})$

Solve AutoSC

- grid search
- Bayesian optimization [Jones et al., 1998]

AutoSC with better affinity matrix construction method

• LSR (least squares representations) with thresholding

minimize
$$\frac{1}{2} \| \boldsymbol{X} - \boldsymbol{X} \boldsymbol{C} \|_F^2 + \frac{\lambda}{2} \| \boldsymbol{C} \|_F^2$$
 (3)

- diag(
$$m{C}$$
) = 0, $m{C} \leftarrow |m{C}|$

- keep only the largest au elements of each column of $m{c}$

-
$$A = (C + C^{\top})/2$$

AutoSC with better affinity matrix construction method

• LSR (least squares representations) with thresholding

minimize
$$\frac{1}{2} \| \boldsymbol{X} - \boldsymbol{X} \boldsymbol{C} \|_F^2 + \frac{\lambda}{2} \| \boldsymbol{C} \|_F^2$$
 (3)

- diag($m{C}$) = 0, $m{C} \leftarrow |m{C}|$
- keep only the largest τ elements of each column of ${\pmb {\cal C}}$
- $A = (C + C^{\top})/2.$
- KLSR with thresholding

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \| \phi(\boldsymbol{X}) - \phi(\boldsymbol{X}) \boldsymbol{C} \|_F^2 + \frac{\lambda}{2} \| \boldsymbol{C} \|_F^2 \end{array}$$

- The post-processing is similar to LSR

(4)

AutoSC with better affinity matrix construction method

• LSR (least squares representations) with thresholding

minimize
$$\frac{1}{2} \| \boldsymbol{X} - \boldsymbol{X} \boldsymbol{C} \|_F^2 + \frac{\lambda}{2} \| \boldsymbol{C} \|_F^2$$
 (3)

- diag($m{C}$) = 0, $m{C} \leftarrow |m{C}|$
- keep only the largest τ elements of each column of ${\pmb {\cal C}}$
- $A = (C + C^{\top})/2.$
- KLSR with thresholding

minimize
$$\frac{1}{2} \| \phi(\boldsymbol{X}) - \phi(\boldsymbol{X}) \boldsymbol{C} \|_{F}^{2} + \frac{\lambda}{2} \| \boldsymbol{C} \|_{F}^{2}$$

- The post-processing is similar to LSR
- Determine τ by AutoSC
- Theoretical guarantee of LSR and KLSR (see the paper)

(4)

Numerical Results

• AutoSC-BO with KLSR on the first 10 subjects of YaleB [Kuang-Chih et al., 2005] Face dataset

More numerical results can be found in the paper