AutoDistil: Neural Architecture Search for Distilling Large Language Models

https://aka.ms/autodistil

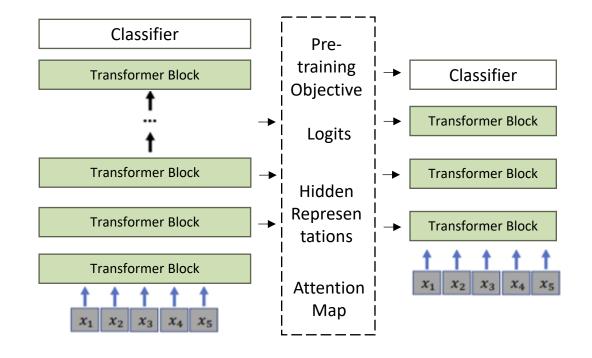
Dongkuan (DK) Xu, Subhabrata Mukherjee, Xiaodong Liu, Debadeepta Dey, Wenhui Wang, Xiang Zhang, Ahmed Hassan Awadallah, Jianfeng Gao

Knowledge Distillation of BERT

Use the large over-parameterized model to distil a small model

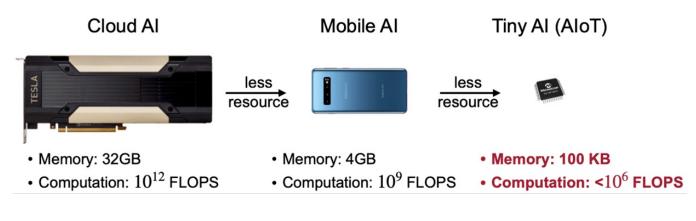
Multi-Objective Knowledge Distillation:

- Teacher Logits
- Multi-layer hidden state transfer
- Attention Map Transfer



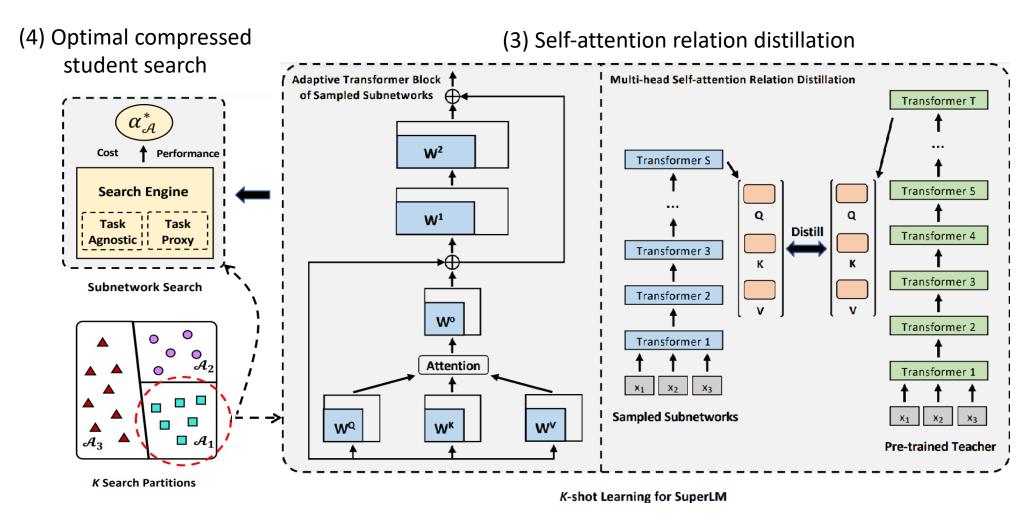
What are the challenges?

- Small model architectures are hand-designed
 - Requires several trials
 - Relies on pre-specified compression rates
 - Re-running distillation with computational budget change
- More, one size does not fit all



Source: https://ofa.mit.edu/

AutoDistil with Neural Architecture Search

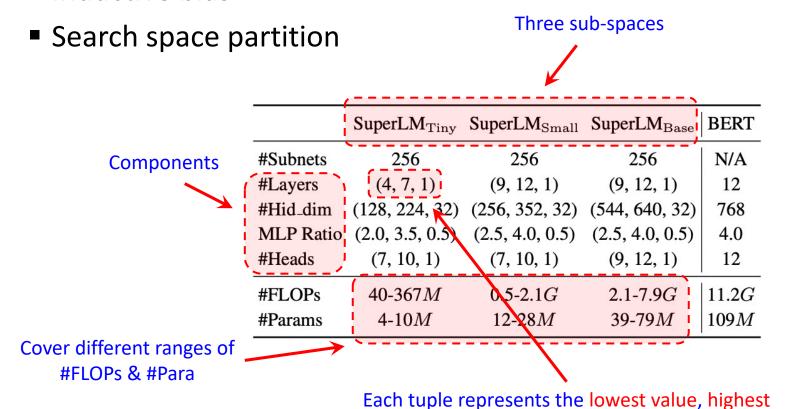


(1) K-shot search space design

(2) Task-agnostic super language model training

Search Space Design

- Searchable transformer components
- Inductive bias



value, and steps for component

AutoDistil vs. Manually Designed Distilled Models

Model (Metric)	#FLOPs (G)	#Para (M)	MNLI-m (Acc)				CoLA (Mcc)	MRPC (Acc)	RTE (Acc)	Average
BERT _{BASE} Devlin et al. [2019] (teacher)	11.2	109	84.5	91.7	91.3	93.2	58.9	87.3	68.6	82.2
BERT _{SMALL} Turc et al. [2019]	5.66	66.5	81.8	89.8	90.6	91.2	53.5	84.9	67.9	80.0
Truncated BERT Williams et al. [2018]	5.66	66.5	81.2	87.9	90.4	90.8	41.4	82.7	65.5	77.1
DistilBERTSanh et al. [2019]	5.66	66.5	82.2	89.2	88.5	91.3	51.3	87.5	59.9	78.6
TinyBERT Jiao et al. [2020]	5.66	66.5	83.5	90.5	90.6	91.6	42.8	88.4	72.2	79.9
MINILM Williams et al. [2018]	5.66	66.5	84.0	91.0	91.0	92.0	49.2	88.4	71.5	81.0
$oxed{ t AutoDistil_{ m Agnostic}}$	2.13	26.8	82.8	89.9	90.8	90.6	47.1	87.3	69.0	79.6
$ exttt{AutoDistil}_{ exttt{Proxy}_{ ext{B}}}$	4.40	50.1	83.8	90.8	91.1	91.1	55.0	88.8	71.9	81.7
$ exttt{AutoDistil}_{ exttt{Proxy}_{ exttt{S}}}$	2.02	26.1	83.2	90.0	90.6	90.1	48.3	88.3	69.4	79.9
$ ext{AutoDistil}_{ ext{Proxy}_{ ext{T}}}$	0.27	6.88	79.0	86.4	89.1	85.9	24.8	78.5	64.3	72.6

Model	#Layers	#Hid	Ratio	#Heads	#FLOPs	#Para
BERT _{BASE} MINILM	12 6	768 768	4 4	12 6	11.2G 5.66G	
AutoDis.Agnostic AutoDis.Proxy _B AutoDis.Proxy _S AutoDis.Proxy _T	11 12 11 7	352 544 352 160	4 3 4 3.5	10 9 8 10	2.13G 4.40G 2.02G 0.27G	50.1M 26.1M

AutoDistil Variable Compression

- AutoDistil generates multiple students with variable computational cost
- Given any SOTA compressed model, AutoDistil finds students with better trade-off (FLOPs vs. Accuracy)

