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Motivation

The output of different initialization methods has differentiated properties

NTK Xavier Condensed

• Learning four data points by three-layer ReLU NNs with different initialization methods.
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How about the more 

general case?

Difficulty:

• Multi-layer structure

• Non-linearity

• Distinct characteristics

Curiosity:

• Different frow two-layer

• Distinct dynamics in one NN



Overview

This study: make a step towards drawing a phase diagram for three-layer ReLU NNs with infinite width
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• Figure out key quantities and 

divide the dynamics into:

• Identify the condensation as 

the strong non-linear signature 

behavior

• Suggest a complicated 

dynamical regimes consisting 

of three possible regimes, 

together with their mixture.

• a linear regime 

• a condensed regime

• a critical regime.



Preliminary

A three-layer NN with 𝒎 hidden neurons for each layer is,
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𝑓𝜽 𝒙 =
1

𝛼
𝒂𝑇𝜎 𝑾 2 𝜎(𝑾 1 𝒙) ,       𝒂𝑘

0~𝒩(0, 𝛽3
2), 𝑾

𝑘𝑘′
2 ,0

~𝒩(0, 𝛽2
2), 𝑾

𝑘𝑘′
1 ,0

~𝒩(0, 𝛽1
2),

where, 𝒙 = 𝒙𝑇 , 1 𝑇, 𝑾[1] = [𝑾 1 , 𝑏𝑘
[1]
]𝑇, ഥ𝒙 = 𝜎(𝑾 1 𝒙), ഥ𝒙 = ഥ𝒙𝑇 , 1 𝑇, 𝑾[2] = [𝑾 2 , 𝑏𝑘

[2]
]𝑇.

The gradient flow of 𝜽 = vec{𝒂,𝑾[2],𝑾[1]},

where 𝑒𝑖 =
1

𝛼
𝒂𝑇𝜎 𝑾 2 𝜎(𝑾 1 𝒙) − 𝑦𝑖 , the operation ⊙ is the Hadamard product.



Rescaling and the normalized model
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The gradient flow of 𝜽 = vec{𝒂,𝑾[2],𝑾[1]},

The normalized gradient flow of 𝜽,

where ഥ𝒂 =
1

𝛽3
𝒂, 𝑾[2] =

1

𝛽2
𝑾[2], 𝑾[1] =

1

𝛽1
𝑾[1], 𝜅1 =

𝛽3

𝛽2
, 𝜅2 =

𝛽3

𝛽1
, 𝜅3 =

𝛽1𝛽2𝛽3

𝛼
, 𝑡 = 𝛼ς𝑖=1

3 𝜅𝑖
−
2

3
𝑡
. 

𝜎 𝑎𝒖 = 𝑎𝜎 𝒖 , 𝜎′ 𝑎𝒖 = 𝜎′(𝒖)



Rescaling and the normalized model
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The normalized gradient flow of 𝜽,

𝜅1 =
𝛽3

𝛽2
, 𝜅2 =

𝛽3

𝛽1
, 𝜅3 =

𝛽1𝛽2𝛽3

𝛼
, ҧ𝑡 = 𝛼ς𝑖=1

3 𝜅𝑖
−
2

3𝑡,

The scaling parameters and infinite-width limit,

Assumption 3.1: 𝑚1 = 𝑚2 = 𝑚
Assumption 3.2: 𝛽2 = 𝐵𝛽3

𝛾1 = lim
𝑚→∞

−
log 𝜅1
log𝑚

= 0, 𝛾2 = lim
𝑚→∞

−
log 𝜅2
log𝑚

, 𝛾3 = lim
𝑚→∞

−
log 𝜅3
log𝑚



Rescaling and the normalized model
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𝜅1 =
𝛽3

𝛽2
, 𝜅2 =

𝛽3

𝛽1
, 𝜅3 =

𝛽1𝛽2𝛽3

𝛼
, ҧ𝑡 = 𝛼ς𝑖=1

3 𝜅𝑖
−
2

3𝑡,

The scaling parameters and infinite-width limit,

𝛾2 = lim
𝑚→∞

−
log 𝜅2
log𝑚

, 𝛾3 = lim
𝑚→∞

−
log 𝜅3
log𝑚

Some common initialization methods



Empirical phase diagram



Empirical phase diagram
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Intuitive experiments of synthetic data

Learning four data points by three-layer ReLU NNs with 𝑚 = 10000 and 𝛾2 = 0. The scatter plots in the second 

row are 𝑊𝐾
1

𝑘=1

𝑚
= (𝑤𝑘

1
, 𝑏𝑘

1
)
𝑘=1

𝑚
, where red plots represent initial position and green plots represent final 

position. 



Empirical phase diagram

Regime identification and separation

• We empirically consider that as 𝑚 → ∞,

• Relative distance,

• Linear regime:              Sup
𝑡∈[0,+∞)

RD 𝑾 𝑖 𝑡 → 0, 𝑖 = 1,2

• Condensed regime:      Sup
𝑡∈[0,+∞)

RD 𝑾 𝑖 𝑡 → +∞ 𝑖 = 1,2

• Critical regime:             Sup
𝑡∈[0,+∞)

RD 𝑾 𝑖 𝑡 → 𝑂(1), 𝑖 = 1,2
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• We empirically found that as 𝑚 → ∞,

• Relative distance,

• Linear regime:              Sup
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RD 𝑾 1 v.s. m. Still learn four data points by three-layer ReLU NNs with different 𝛾3’s and 𝛾2 = 0.
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Empirical phase diagram

Regime identification and separation

RD 𝑾 1 v.s. m. Still learn four data points by three-layer ReLU NNs with different 𝛾3’s and 𝛾2 = 0.

We quantify the growth of RD 𝑾 𝑖 , 𝑖 = 1,2, as 𝑚 → ∞, by defining, 

𝑆𝑾[𝑖] = lim
𝑚→∞

log RD(𝑾[𝑖])

log𝑚

• Linear regime:               𝑆𝑾[𝑖] < 0

• Condensed regime:       𝑆𝑾[𝑖] > 0

• Critical regime:              𝑆𝑾[𝑖] = 0
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For synthetic data,

• Linear regime:               𝑆𝑾[𝑖] < 0

• Condensed regime:       𝑆𝑾[𝑖] > 0
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Empirical phase diagram

Regime identification and separation

For synthetic data,

For mnist data,
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Summary

• Characterize the linear, critical, and condensed regimes 

• Identify the condensation as non-linear

• Figure out the relation between the training dynamics and 

initialization

• Draw the phase diagram

• Reveal different training dynamics within a neural network
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