The Hessian Screening Rule

NeurIPS 2022

Johan Larsson Jonas Wallin
Department of Statistics, Lund University

October 20, 2022

The Lasso

A type of penalized regression, represented by the following convex optimization problem:

$$
\underset{\beta \in \mathbb{R}^{p}}{\operatorname{minimize}}\left\{f(\beta)+\lambda\|\beta\|_{1} \cdot\right\}
$$

where $f(\beta)$ is smooth and convex.
$f(\beta)=\frac{1}{2}\|y-X \beta\|_{2}^{2}$ leads to the ordinary lasso.
λ is a hyperparameter that controls the level of penalization.
$\hat{\beta}(\lambda)$ is the solution to this problem for a given λ.

The Lasso Path

Solving the lasso for $\lambda \in\left[0, \lambda_{\max }\right)$, with

$$
\lambda_{\max }:=\max \left\{\lambda \in \mathbb{R}^{+} \mid \hat{\beta}(\lambda)=0\right\},
$$

traces the set of all solutions for the lasso.

The lasso path is piece-wise linear with breaks wherever the active set changes.

The active set:

$$
\left\{i:\left|\beta_{i}\right| \neq 0\right\} .
$$

Figure 1: The lasso path for an example of the ordinary lasso

Picking λ

The Problem

Typically don't know the optimal value for λ. To tackle this, we use cross-validation to tune for λ.

Picking λ

The Problem

Typically don't know the optimal value for λ. To tackle this, we use cross-validation to tune for λ.

Grid Search

For $p \gg n$, the standard procedure is to create a grid of $\lambda \mathrm{s}$ and solve the lasso numerically.

Picking λ

The Problem

Typically don't know the optimal value for λ. To tackle this, we use cross-validation to tune for λ.

Grid Search

For $p \gg n$, the standard procedure is to create a grid of $\lambda \mathrm{s}$ and solve the lasso numerically.

But this is computationally demanding when p is large.

Screening Rules

Feature Screening

Motivation

Many solutions along the regularization path are sparse, especially if $p \gg n$ since the number of active features cannot exceed $\min (n, p)$.

Feature Screening

Motivation

Many solutions along the regularization path are sparse, especially if $p \gg n$ since the number of active features cannot exceed $\min (n, p)$.

Basic Idea

Say that we are at step k on the lasso path and are about to solve for step $k+1$.

Intuitively, information at k should tell us something about which features are going to be active at step $k+1$.

The idea is to use this information to discard a subset of the features and fit the model to a smaller set of features-the screened set.

The Gradient Perspective of the Path

Figure 2: The gradient vector along the lasso path

Screening Rules Seen As Gradient Estimates

Let $c(\lambda):=-\nabla f(\beta(\lambda))$ be the so-called correlation vector.
$\mathbf{0} \in \nabla f(\beta)+\lambda \partial$ suggests a simple template for a screening rule:

1. Replace c with an estimate \tilde{c}.
2. If $\left|\tilde{c}_{j}\right|<\lambda$, discard feature j.

If \tilde{c} is accurate and not too conservative, we have a useful rule.

The Hessian Screening Rule

The Ordinary Lasso

We now focus on the ordinary lasso, ℓ_{1}-regularized least squares:

$$
f(\beta)=\frac{1}{2}\|y-X \beta\|_{2}^{2}
$$

and

$$
\nabla f(\beta)=X^{T}(X \beta-y)
$$

The Ordinary Lasso

We now focus on the ordinary lasso, ℓ_{1}-regularized least squares:

$$
f(\beta)=\frac{1}{2}\|y-X \beta\|_{2}^{2}
$$

and

$$
\nabla f(\beta)=X^{T}(X \beta-y)
$$

It turns out that we can express the solution as a function of λ :

$$
\hat{\beta}(\lambda)=\left(X_{\mathcal{A}}{ }^{T} X_{\mathcal{A}}\right)^{-1}\left(X_{\mathcal{A}}{ }^{T} y-\lambda \operatorname{sign}\left(\hat{\beta}_{\mathcal{A}}\right)\right) .
$$

The Ordinary Lasso

We now focus on the ordinary lasso, ℓ_{1}-regularized least squares:

$$
f(\beta)=\frac{1}{2}\|y-X \beta\|_{2}^{2}
$$

and

$$
\nabla f(\beta)=X^{T}(X \beta-y)
$$

It turns out that we can express the solution as a function of λ :

$$
\hat{\beta}(\lambda)=\left(X_{\mathcal{A}}{ }^{T} X_{\mathcal{A}}\right)^{-1}\left(X_{\mathcal{A}}{ }^{T} y-\lambda \operatorname{sign}\left(\hat{\beta}_{\mathcal{A}}\right)\right) .
$$

This expression holds for an interval $\left[\lambda_{k}, \lambda_{k+1}\right.$] in which no changes occur in the active set, which means we can retrieve any solution in this range via

$$
\hat{\beta}\left(\lambda_{k+1}\right)_{\mathcal{A}}=\hat{\beta}\left(\lambda_{k}\right)_{\mathcal{A}}-\left(\lambda_{k}-\lambda_{k+1}\right)\left(X_{\mathcal{A}}^{T} X_{\mathcal{A}}\right)^{-1} \operatorname{sign}\left(\hat{\beta}\left(\lambda_{k}\right)_{\mathcal{A}}\right) .
$$

The Hessian Screening Rule

Take this expression and stick it into the gradient at step $k+1$:

$$
\begin{aligned}
\tilde{c}^{H}\left(\lambda_{k+1}\right) & =-\nabla f\left(\hat{\beta}\left(\lambda_{k+1}\right)_{\mathcal{A}}\right) \\
& =c\left(\lambda_{k}\right)+\left(\lambda_{k+1}-\lambda_{k}\right) X^{T} X_{\mathcal{A}}\left(X_{\mathcal{A}}^{T} X_{\mathcal{A}}\right)^{-1} \operatorname{sign}\left(\hat{\beta}\left(\lambda_{k}\right)_{\mathcal{A}}\right),
\end{aligned}
$$

which is the basic form of our screening rule: The Hessian Screening Rule.

Note that this is an exact expression for the correlation vector (negative gradient) at step $k+1$ if the activate set has remained unchanged.

The Hessian Screening Rule is a heuristic (un-safe) rule, so it needs safe-guarding in order to avoid discarding active features.

The Hessian and Strong Screening Rules

Figure 3: Conceptual comparison of screening rules

Results

Setup

- Rows of the feature matrix i.i.d. from $\mathcal{N}(0, \Sigma)$
- Response generated from $\mathcal{N}\left(X \beta, \sigma^{2} I\right)$ with $\sigma^{2}=\beta^{T} \Sigma \beta /$ SNR
- s non-zero coefficients, equally spaced throughout the coefficient vector

Scenario 1 (Low-Dimensional)
$n=10000, p=100, s=5$, and $\mathrm{SNR}=1$
Scenario 2 (High-Dimensional)
$n=400, p=40000, s=20$, and $\mathrm{SNR}=2$
Code is located at github.com/jolars/HessianScreening

Effectiveness

Figure 4: Number of features screened when fitting a lasso path for ℓ_{1}-regularized least-squares to a design with varying correlation (ρ), $n=200$, and $p=20000$. The actual number of active features at each step across iterations is given as a dashed line.

Simulated Data

Figure 5: Time to fit a full regularization path for ℓ_{1}-regularized least-squares and logistic regression to a design with n observations, p features, and pairwise correlation between features of ρ. Time is relative to the minimal value for each group.

Discussion

- Simple, intuitive, idea
- Performs well in our examples
- Handles the highly-correlated case very well
- Works for arbitrary loss functions that are twice differentiable
- Works for other penalty functions too (SLOPE, MCP, SCAD, Elastic Net)

