

Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights

Konstantin Schürholt¹, Boris Knyazev², Xavier Giró-i-Nieto³, Damian Borth¹

¹ AI:ML Lab, School of Computer Science, University of St. Gallen

² Samsung - SAIT AI Lab, Montreal

³ Institut de Robòtica i Informàtica Industrial, Universitat Politècnica de Catalunya

Introduction

Learning from populations of Neural Network models is an emerging topic.

Discriminative: predict model properties

- Predict: accuracy, generalization gap, hyperparameters
- Features: weights [Unterthiner et al., 2020; Martin et al., 2021], activations [Jiang et al., 2019], graph-metrics [Corneanu et al., 2020]

Generative: generate new models

- HyperNetworks [Ha et al., 2016; Deutsch, 2018; Zhang et al., 2020; Knyazev et al., 2021; Zhmoginov et al., 2022; Ratzlaff and Fuxin, 2019.]
- Transfer Learning, Knowledge Distillation [Shu et al., 2021; Liu et al., 2019.]

This work: Generative Hyper-Representations

Goal:

- Better initializations for fine-tuning and transfer-learning
- Knowledge distillation from populations
- Generate diverse ensembles

Approach

Zoo Generation Details

- Small CNNs: 3 conv, 2 FC layers
- ~2500 parameters
- 1000 models, trained for 25 epochs
- Initialized with different random seeds

Hyper-Representation Details

- Encoder-Decoder Transformer
- Trained with Reconstruction and Contrast

Sampling Details

- Properties like accuracy are embedded in latent
- Problem: space is relatively high-dimensional
- We propose 3 methods to sample good models

• Use sampled models as initialization:

Evaluation Details

- finetuning in-distribution
- transfer learning
- generating diverse ensembles

$$\mathcal{L}_{M\bar{S}E} = \frac{1}{MN} \sum_{i=1}^{M} \sum_{l=1}^{L} \left\| \frac{\hat{\mathbf{w}}_{i}^{(l)} - \mu_{l}}{\sigma_{l}} - \frac{\mathbf{w}_{i}^{(l)} - \mu_{l}}{\sigma_{l}} \right\|_{2}^{2} = \frac{1}{MN} \sum_{i=1}^{M} \sum_{l=1}^{L} \frac{\|\hat{\mathbf{w}}_{i}^{(l)} - \mathbf{w}_{i}^{(l)}\|_{2}^{2}}{\sigma_{l}^{2}}.$$

Sampling initializations

Sampling methods are targeted: distinguish high / low accuracy

Sampled populations are better than (or comparable to) baselines:

- As initialization
- In finetuning (often after 1 ep better than 25 ep trained from scratch)

	Method	Ep.	MNIST	SVHN	CIFAR-10	STL-10	
	B_T	0	$\approx 10\%$ (random guessing)				
	$B_{ m KDE30}$	0	63.2 ± 7.2	10.1 ± 3.2	15.5 ± 3.4	12.7 ± 3.4	
	$S_{ m KDE30}$	0	68.6 ± 6.7	51.5 ± 5.9	26.9 ± 4.9	19.7 ± 2.1	
_	B_T	1	20.6 ± 1.6	19.4 ± 0.6	27.5 ± 2.1	15.4 ± 1.8	
	B_{KDE30}	1	83.2 ± 1.2	67.4 ± 2.0	39.7 ± 0.6	26.4 ± 1.6	
	$S_{ m KDE30}$	1	83.7 ± 1.3	69.9 ± 1.6	44.0 ± 0.5	25.9 ± 1.6	
_	B_T	25	83.3 ± 2.6	66.7 ± 8.5	46.1 ± 1.3	35.0 ± 1.3	
	B_{KDE30}	25	93.2 ± 0.6	75.4 ± 0.9	48.1 ± 0.6	38.4 ± 0.9	
	S_{KDE30}	25	93.0 ± 0.7	74.2 ± 1.4	48.6 ± 0.5	38.1 ± 1.1	
	B_T	50	91.1 ± 2.6	70.7 ± 8.8	48.7 ± 1.4	39.0 ± 1.0	

Sampling for New Tasks and Architectures

Sampled populations outperform or match baselines for transfer-learning

Method	SVHN to MNIST					
	Ер. 0	Ер. 1	Ер. 50			
B_T B_F	10.0 ± 0.6 33.4 ± 5.4	20.6 ± 1.6 84.4 ± 7.4	91.1 ± 1.0 95.0 ± 0.8			
$\frac{-1}{S_{\text{KDE30}}}$	31.8 ± 5.6	86.9 ± 1.4	95.5 ± 0.4			

Sampled weights generalize to changed architectures and outperform random initialization

Initialization	Epoch 1	Epoch 5	Epoch 50
3-conv (r. i.) + res-skip (r. i.)	18.9 ± 1.6	$\overline{31.4 \pm 17}$	50.6 ± 28
3-conv (gen.) + res-skip (r. i.)	34.5 ± 14	60.5 ± 21	68.0 ± 21
4-conv (r. i.)	$\overline{19.2 \pm 1.0}$	19.2 ± 0.9	55.2 ± 11
4-conv (gen.)	44.0 ± 4.5	57.8 ± 3.5	67.6 ± 1.9
4-conv + idskip (r. i.)	18.9 ± 1.0	19.6 ± 1.7	56.4 ± 7.9
4-conv + idskip (gen.)	48.0 ± 4.0	59.9 ± 2.5	66.4 ± 1.7

Acknowledgements

Find our work at **hsg.ai/neurips22**

Funding:

- Google Research Scholar Award (Damian Borth)
- HSG Basic Research Fund
- MCIN/ AEI /10.13039/501100011033

References

- [1] Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predicting Neural Network Accuracy from Weights. arXiv:2002.11448, February 2020.
- [2] Charles H Martin, Tongsu Serena Peng, and Michael W Mahoney. Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications, 12(1):1–13, 2021.
- [3] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, Samy Bengio. Predicting the Generalization Gap in Deep Networks with Margin Distributions. ICLR 2019.
- [4] Ciprian Corneanu, Meysam Madadi, Sergio Escalera, Aleix Martinez. Computing the Testing Error Without a Testing Set. CVPR 2020.
- [5] David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks. In arXiv:1609.09106 [Cs], 2016.
- [6] Lior Deutsch. Generating Neural Networks with Neural Networks. arXiv:1801.01952 [cs, stat], April 2018.
- [7] Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph HyperNetworks for Neural Architecture Search. arXiv:1810.05749 [cs, stat], December 2020.
- [8] Boris Knyazev, Michal Drozdzal, Graham W. Taylor, and Adriana Romero-Soriano. Parameter Prediction for Unseen Deep Architectures. In Conference on Neural Information Processing Systems (NeurIPS), 2021.
- [9] Andrey Zhmoginov, Mark Sandler, and Max Vladymyrov. HyperTransformer: Model Generation for Supervised and Semi-Supervised Few-Shot Learning. arXiv:2201.04182 [cs], January 2022.
- [10] Neale Ratzlaff and Li Fuxin. HyperGAN: A Generative Model for Diverse, Performant Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, pages 5361–5369. PMLR, May 2019.
- [11] Yang Shu, Zhi Kou, Zhangjie Cao, Jianmin Wang, and Mingsheng Long. Zoo-tuning: Adaptive transfer from a zoo of models. In International Conference on Machine Learning, pages 457 9626–9637. PMLR, 2021.
- [12] Iou-Jen Liu, Jian Peng, and Alexander G. Schwing. Knowledge Flow: Improve Upon Your Teachers. In International Conference on Learning Representations (ICLR), April 2019.
- [13] Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-Supervised Representation Learning on Neural Network Weights for Model Characteristic Prediction. In Conference on Neural Information Processing Systems (NeurIPS), volume 35, 2021.