## An $\alpha$-regret Analysis of Adversarial Bilateral Trade

Yossi Azar ${ }^{1} \quad$ Amos Fiat ${ }^{1}$ Federico Fusco ${ }^{2}$

NeurIPS'22 - New Orleans
${ }^{1}$ Tel Aviv University ${ }^{2}$ Sapienza University of Rome

## Bilateral Trade

We study the bilateral trade problem in the framework of online learning

## Bilateral Trade

We study the bilateral trade problem in the framework of online learning

## Learning Protocol of Sequential Bilateral Trade

1: for time $t=1,2, \ldots$ do
2: a new seller/buyer pair arrives with (hidden) valuations $\left(s_{t}, b_{t}\right) \in[0,1]^{2}$
3: $\quad$ the learner posts prices $p_{t}, q_{t} \in[0,1]$ with $p_{t} \leq q_{t}$
4: $\quad$ the learner receives a (hidden) reward $\mathrm{GFT}_{t}\left(p_{t}, q_{t}\right)$
5: a feedback $z_{t}$ is revealed

## Bilateral Trade

We study the bilateral trade problem in the framework of online learning

## Learning Protocol of Sequential Bilateral Trade

1: for time $t=1,2, \ldots$ do
2: a new seller/buyer pair arrives with (hidden) valuations $\left(s_{t}, b_{t}\right) \in[0,1]^{2}$
3: $\quad$ the learner posts prices $p_{t}, q_{t} \in[0,1]$ with $p_{t} \leq q_{t}$
4: $\quad$ the learner receives a (hidden) reward $\mathrm{GFT}_{t}\left(p_{t}, q_{t}\right)$
5: a feedback $z_{t}$ is revealed

## Gain from trade

$$
\begin{aligned}
\operatorname{GFT}_{t}\left(p_{t}, q_{t}\right) & =(\underbrace{\left(b_{t}-q_{t}\right)}_{\text {buyer's gain }}+\underbrace{\left(q_{t}-p_{t}\right)}_{\text {platform's gain }}+\underbrace{\left(p_{t}-s_{t}\right)}_{\text {seller's gain }}) \underbrace{\mathbb{I}\left\{s_{t} \leq p_{t} \leq q_{t} \leq b_{t}\right\}}_{\text {trade happens }} \\
& =\left(b_{t}-s_{t}\right) \mathbb{I}\left\{s_{t} \leq p_{t} \leq q_{t} \leq b_{t}\right\}
\end{aligned}
$$

## Feedback models and regret

## Feedback models

- Full feedback (direct revelation): $z_{t}=\left(s_{t}, b_{t}\right)$
- Two-bit feedback (posted-price): $z_{t}=\left(\mathbb{I}\left\{s_{t} \leq p_{t}\right\}, \mathbb{I}\left\{q_{t} \leq b_{t}\right\}\right)$
- One-bit feedback (minimal): $z_{t}=\mathbb{I}\left\{s_{t} \leq p_{t} \leq q_{t} \leq b_{t}\right\}$


## Feedback models and regret

## Feedback models

- Full feedback (direct revelation): $z_{t}=\left(s_{t}, b_{t}\right)$
- Two-bit feedback (posted-price): $z_{t}=\left(\mathbb{I}\left\{s_{t} \leq p_{t}\right\}, \mathbb{I}\left\{q_{t} \leq b_{t}\right\}\right)$
- One-bit feedback (minimal): $z_{t}=\mathbb{I}\left\{s_{t} \leq p_{t} \leq q_{t} \leq b_{t}\right\}$


## Prices

- Single Price (strong budget balance): $p_{t}=q_{t}$
- Two Prices (budget balance): $p_{t} \leq q_{t}$


## Feedback models and regret

## Feedback models

- Full feedback (direct revelation): $z_{t}=\left(s_{t}, b_{t}\right)$
- Two-bit feedback (posted-price): $z_{t}=\left(\mathbb{I}\left\{s_{t} \leq p_{t}\right\}, \mathbb{I}\left\{q_{t} \leq b_{t}\right\}\right)$
- One-bit feedback (minimal): $z_{t}=\mathbb{I}\left\{s_{t} \leq p_{t} \leq q_{t} \leq b_{t}\right\}$


## Prices

- Single Price (strong budget balance): $p_{t}=q_{t}$
- Two Prices (budget balance): $p_{t} \leq q_{t}$


## Adversaries

- Stochasthic setting: i.i.d. valuations $\checkmark$ [Cesa-Bianchi et al. 2021]

$$
R_{T}=\max _{p \in[0,1]} \mathbb{E}\left[\sum_{t=1}^{T} \operatorname{GFT}_{t}(p)-\sum_{t=1}^{T} \mathrm{GFT}_{t}\left(p_{t}, q_{t}\right)\right]
$$

## Feedback models and regret

## Feedback models

- Full feedback (direct revelation): $z_{t}=\left(s_{t}, b_{t}\right)$
- Two-bit feedback (posted-price): $z_{t}=\left(\mathbb{I}\left\{s_{t} \leq p_{t}\right\}, \mathbb{I}\left\{q_{t} \leq b_{t}\right\}\right)$
- One-bit feedback (minimal): $z_{t}=\mathbb{I}\left\{s_{t} \leq p_{t} \leq q_{t} \leq b_{t}\right\}$


## Prices

- Single Price (strong budget balance): $p_{t}=q_{t}$
- Two Prices (budget balance): $p_{t} \leq q_{t}$


## Adversaries

- Stochasthic setting: i.i.d. valuations $\checkmark$ [Cesa-Bianchi et al. 2021]
- Adversarial setting: any (oblivious) sequence $\boldsymbol{x}$ [Cesa-Bianchi et al. 2021]

$$
R_{T}=\max _{p \in[0,1]} \mathbb{E}\left[\sum_{t=1}^{T} \operatorname{GFT}_{t}(p)-\sum_{t=1}^{T} \mathrm{GFT}_{t}\left(p_{t}, q_{t}\right)\right]
$$

## Feedback models and regret

## Feedback models

- Full feedback (direct revelation): $z_{t}=\left(s_{t}, b_{t}\right)$
- Two-bit feedback (posted-price): $z_{t}=\left(\mathbb{I}\left\{s_{t} \leq p_{t}\right\}, \mathbb{I}\left\{q_{t} \leq b_{t}\right\}\right)$
- One-bit feedback (minimal): $z_{t}=\mathbb{I}\left\{s_{t} \leq p_{t} \leq q_{t} \leq b_{t}\right\}$


## Prices

- Single Price (strong budget balance): $p_{t}=q_{t}$
- Two Prices (budget balance): $p_{t} \leq q_{t}$


## Adversaries

- Stochasthic setting: i.i.d. valuations $\checkmark$ [Cesa-Bianchi et al. 2021]
- Adversarial setting: any (oblivious) sequence $\checkmark$ [This work]

$$
R_{T}^{\alpha}=\max _{p \in[0,1]} \mathbb{E}\left[\sum_{t=1}^{T} \operatorname{GFT}_{t}(p)-\alpha \sum_{t=1}^{T} \mathrm{GFT}_{t}\left(p_{t}, q_{t}\right)\right]
$$

## The soft spot: $\alpha=2$

## Theorem

For any $\alpha \in[1,2)$, there is a linear lower bound on the $\alpha$-regret achievable, even with full feedback and posting two different prices.

## The soft spot: $\alpha=2$

## Theorem

For any $\alpha \in[1,2)$, there is a linear lower bound on the $\alpha$-regret achievable, even with full feedback and posting two different prices.

|  | Full Feedback | Two-bit feedback | One-bit feedback |
| :--- | :---: | :---: | :---: |
| Single price | $O(\sqrt{ })$ | $\Omega(T)$ |  |
| Two prices | $\Omega(\sqrt{T})$ | $\Omega\left(T^{2 / 3}\right)$ | $O\left(T^{3 / 4}\right)$ |

Table: Summary of 2-regret results in various settings.

- Upper bound with 1-bit feedback: "Magic" Estimator
- Lower bounds: Partial monitoring and feedback structure


## Thank you! <br> See you in New Orleans

