

On A Mallows-type Model For (Ranked) Choices

Yuxuan Tang Institute of Operations Research and Analytics, National University of Singapore

Joint Work with Yifan Feng, NUS Business School

Institute of Operations **Research and Analytics**

A company designs

What's the preference over these *n* items?

A Motivating Example

Ask for top-k feedback

Choice: π_k^t

"Ranked Choices"

What is the Mallows Model?

Probability distribution of rankings/permutations

 π^* : Central Ranking^[1]

$$\lambda(\pi) = \frac{q^{d_K(\pi^*,\pi)}}{\sum_{\pi'} q^{d_K(\pi^*,\pi')}}$$

Dispersion parameter q:

Kendall's Tau Distance^[1]:

$$d_{K}(\pi) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} I\{\pi(i) > \pi(j)\}$$

Apply Mallows model to ranked choices?

▶ For top-1 feedback (choice data), Désir, Goyal, Jagabathula and Segevd (Operations Research, 2021)^[1] use mixture of Mallows model

Choice probabilities can be evaluated in $O(n^2 \log n)$.

Estimation is still hard, and they propose Mallows Smoothing to conduct estimation.

Numerically show better prediction power than sparse ranking-based choice model.

Even if all display sets S with |S| > 2 are displayed infinite times, the estimator from Theorem the Mallows Smoothing heuristic is not consistent.

1206-1227.

^[1] Désir, A., Goyal, V., Jagabathula, S., & Segev, D. (2021). Mallows-smoothed distribution over rankings approach for modeling choice. Operations Research, 69(4),

Main Contributions

We develop a novel Mallows-type model and

- Characterize simple closed-form (ranked) choice probabilities,
- Learn the parameters with guaranteed consistency relatively easy,
- Learn in a *mixture* setting by Expectation Maximization (EM) algorithm,
- Efficiently sample out a top-k list.

Our RMJ-based Ranking Model

A new distance function: Reverse Major Index (RMJ)^[1]

i=1

- Adjacent disagreement
- Linear decreasing weight

(4,2,1,3)				
Distance Function	RMJ	Kendall's Tau		
Number of Disagreement	2 adjacent	4 pairwise		
Disagreements	(4,2), (2,1)	(4,2), (4,1), (4,3), (2,1)		
Weights	3,2	1,1,1,1		
Distance	3+2=5	1 + 1 + 1 + 1 = 4		

 $d_R(\pi) = \sum_{i=1}^{n-1} I\{\pi(i) > \pi(i+1)\} \cdot (n-i)$

Simple Closed-form Choice Probability

Theorem Given a display set $S = \{x_1, x_1, x_2, \dots, x_n\}$ $\mathbb{P}(x_i | S) = \mathbb{P}(x_i | S)$

Relative ranking within display set matters.

Choice probabilities decay exponentially fast.

Theorem Given a display set $S = \{x_1, x_2, \dots, x_M\}$ be such that $x_1 < x_2 < \dots < x_M$. Then

$$= \frac{q^{i-1}}{1+q+\ldots+q^{M-1}}$$

Siven historical data $H_T = (S_1, x_1, \dots, S_T, x_T)$ ▶ MLE formulation:

 $\sum_{t=1}^{T} \log \left(\frac{1-\zeta}{1-q} \right)^{t}$

where

▶
$$w_{ij} := \sum_{t=1}^{T} I\{\{i, j\} \subseteq S_t \text{ and } x_t = i\}$$

▶ Intuitively, a positive $w_{ij} - w_{ji}$ is an indication that item i should be preferred to item j.

Integer Programming Reformulation: Well-studied weighted feedback arc set problem on tournaments.

Siven π and set $\alpha = -\log q$, MLE is a concave function of α .

Parameter Learning

$$\frac{q}{|S_t|} + \log q \sum_{(i,j):i\neq j} I\left\{j \succ_{\pi} i\right\} \cdot w_{ij}$$

$$\begin{split} \min \sum_{(i,j):i\neq j} w_{ij} x_{ji} \\ \text{s.t.} \\ x_{ij} + x_{ji} &= 1 \quad \forall 1 \leq i, j \leq n \\ x_{ij} + x_{jr} + x_{ri} \leq 2 \quad \forall 1 \leq i, j \\ x_{ij} \in \{0,1\} \quad \forall 1 \leq i, j \leq n \\ \end{split}$$
$$\begin{aligned} x_{ij} &= 1 \text{ means } i \succ_{\pi} j. \end{split}$$

Ranked Choice Probability

Theorem Given a display set S and a π_k such that $R(\pi_k) \subseteq S$, we have

$$(\pi_k) + L_S(\pi_k) \cdot \frac{\psi(|S| - k, q)}{\psi(|S|, q)}$$

Learning on Ranked Choices

Given historical data $H_T = (S_1, \pi_k^1, \dots, S_T, \pi_K^1, \dots, S_T,$

integer program with a generalized definition of w_{ii} below $w_{ij} = \sum_{t=1}^{I} \left[\sum_{h=1}^{k-1} \left(|S_t| - h \right) \cdot I\{x_h^t = i, x_{h+1}^t = j\} + I\{x_k^t = i\} \cdot I\{\{i, j\} \subseteq S_t \setminus \{x_1^t, \dots, x_{k-1}^t\} \} \right]$

$$\pi_k^T$$
), where $\pi_k^t = (x_1^t, ..., x_k^t)$.

Theorem The MLE for the central ranking can be obtained from the same

Nice Properties

Lemma 1 (Probability distribution of top-k rankings, $k \ge 1$) $\lambda(\pi_k) = q^{d(\pi_k)}$

Lemma 2 (Sampling of Next Position)

Given π_k such that $\pi_k(k) = z$, the conditional probability for the (k + 1)-positioned item is

$$\mathbb{P}\left(\pi_{k+1} = \pi_k \bigoplus y \mid \pi_k\right) = \frac{q^{h(y|z)-1}}{1+q+\dots+q^{n-k-1}}$$

where
$$h(y \mid z) = \begin{cases} \sum_{x \in R^c(\pi_k)} \mathbb{I}\{z < x \le y\} & \text{if } y > z \\ n - k - \sum_{x \in R^c(\pi_k)} \mathbb{I}\{y < x < z\} & \text{if } y < z \end{cases}$$

$$(\psi_k) + L(\pi_k) \cdot \frac{\psi(n-k,q)}{\psi(n,q)}$$

An example of 3 items, {1,2,3}.

$$\lambda((1,2,3)) = \frac{1}{1+q+q^2} \times \frac{1}{1+q} \times 1$$

Efficient Sampling: *O*(*nk*)

Experiment 1: Prediction Accuracy
Experiment 2: Robustness Check
Experiment 3: Efficient Estimation

Two public ranking data sets about sushi preference^[1]

- 5000 complete rankings over 10 kinds of sushi.
- 5000 top-10 rankings over 100 kinds of sushi.

Public Data Sets

Experiment 1: Prediction on Top-1 Choice

Compare with Mallows model and Plackett-Luce model. ▶ Fit into mixture models.

In each panel, the x-axis represents the number of clusters, and the y-axis represents the log-likelihood metric.

Experiment 2: Robustness Check on Top-k Choice

▶ The 10 Sushi data set. We conduct estimation on top-1, top-2 and top-3 ranked choices.

- Compare with Borda Count¹ and Simple Count²
- Discrepancy: Average pairwise Kendall' Tau distance

Setting 1: Display Sets: {set with $size \ge k$ } (Balanced Display)

	OAM	Borda Count	Simple Count	
Top-3	$(8,5,\!6,\!3,\!2,\!1,\!4,\!9,\!7,\!10)$	(8,3,6,1,2,5,4,9,7,10)	(8,3,1,6,2,5,4,9,7,10)	
Top-2	$(8,5,\!6,\!3,\!2,\!1,\!4,\!9,\!7,\!10)$	(8,3,5,6,1,2,4,9,7,10)	$(8,\!3,\!6,\!1,\!5,\!2,\!4,\!9,\!7,\!10)$	
Top-1	(8,5,6,3,2,1,4,9,7,10)	(8,5,6,3,2,1,4,9,7,10)	(8,5,3,6,2,1,4,9,7,10)	
Discrepancy	0	4	4	

Setting 2: Display Sets: $\{[10], \{7,9,10\}\}$ (Unbalanced Display)

	OAM	Borda Count	Simple Count	
Top-3	$(8,\!5,\!3,\!2,\!6,\!1,\!4,\!9,\!7,\!10)$	(8,3,5,6,9,2,1,7,4,10)	9,710,8,3,5,6,2,1,4	
Top-2	(8,5,6,3,2,1,4,9,7,10)	(8,5,9,6,3,2,1,7,4,10)	9,78,10,5,6,3,2,1,4	
Top-1	(8,5,2,6,1,3,4,9,7,10)	(8,59,72,6,1,3,4,10)	9,78,5,2,6,10,1,3,4	
Discrepancy	2.67	7.33	6	

1. Borda Count: the score of an item is linear decreasing with its rank.

2. Simple Count: simply count the occurrences of each sushi in the top-k choice.

Experiment 3: Efficiency When n is large

▶ Training data is 5000 top-10 choices out of 100 types of sushi.

▶ We use LP relaxation to speed up the IP.

▶ We bootstrap 10 times (each time drawing 10000 samples) and record the running times and optimality gaps^[1].

	Model Building Time (min)	Model Solving Time (min)	Optimality Gap
Average	21.10	4.20	1.47%
Max	21.19	4.50	1.79%
		< 5min	< 2%

[1] Feng, Y., Caldentey, R., & Ryan, C. T. (2022). Robust learning of consumer preferences. Operations Research, 70(2), 918-962.

On A Mallows-type Model For (Ranked) Choices

Yifan Feng

Department of Analytics and Operations NUS Business School yifan.feng@nus.edu.sg

We consider a preference learning setting where every participant chooses an ordered list of k most preferred items among a displayed set of candidates. (The set can be different for every participant.) We identify a distance-based ranking model for the population's preferences and their (ranked) choice behavior. The ranking model resembles the Mallows model but uses a new distance function called Reverse Major Index (RMJ). We find that despite the need to sum over all permutations, the RMJ-based ranking distribution aggregates into (ranked) choice probabilities with simple closed-form expression. We develop effective methods to estimate the model parameters and showcase their generalization power using real data, especially when there is a limited variety of display sets.

Yuxuan Tang

Institute of Operations Research and Analytics National University of Singapore yuxuan.tang@u.nus.edu

Abstract