On A Mallows-type Model For (Ranked) Choices

Yuxuan Tang
Institute of Operations Research and Analytics, National University of Singapore

Joint Work with Yifan Feng, NUS Business School

A Motivating Example

A company designs

What's the preference over these n items?

Ask for top-k feedback

Sample $t=18$

Display Set: S_{t}

Choice: π_{k}^{t}

"Ranked Choices"

What is the Mallows Model?

Probability distribution of rankings/permutations

π^{*} : Central Ranking ${ }^{[1]}$

$$
\lambda(\pi)=\frac{q^{d_{K}\left(\pi^{*}, \pi\right)}}{\sum_{\pi^{\prime}} q^{d_{K}\left(\pi^{*}, \pi^{\prime}\right)}}
$$

q : Dispersion parameter

Kendall's Tau Distance ${ }^{[1]}$:

$$
d_{K}(\pi)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} I\{\pi(i)>\pi(j)\}
$$

Apply Mallows model to ranked choices?

* For top-1 feedback (choice data), Désir, Goyal, Jagabathula and Segevd (Operations Research, 2021) ${ }^{[1]}$ use mixture of Mallows model
- Choice probabilities can be evaluated in $O\left(n^{2} \log n\right)$.
- Estimation is still hard, and they propose Mallows Smoothing to conduct estimation.
- Numerically show better prediction power than sparse ranking-based choice model.

Theorem Even if all display sets S with $|S|>2$ are displayed infinite times, the estimator from the Mallows Smoothing heuristic is not consistent.

Main Contributions

* We develop a novel Mallows-type model and
* Characterize simple closed-form (ranked) choice probabilities,

B Learn the parameters with guaranteed consistency relatively easy,

B Learn in a mixture setting by Expectation Maximization (EM) algorithm,

B Efficiently sample out a top-k list.

Our RMJ-based Ranking Model

- A new distance function: Reverse Major Index (RMJ) ${ }^{[1]}$

$$
d_{R}(\pi)=\sum_{i=1}^{n-1} I\{\pi(i)>\pi(i+1)\} \cdot(n-i)
$$

* Adjacent disagreement
* Linear decreasing weight

$(4,2,1,3)$		
Distance Function	RMJ	Kendall's Tau
Number of Disagreement	2 adjacent	4 pairwise
Disagreements	$(4,2),(2,1)$	$(4,2),(4,1),(4,3),(2,1)$
Weights	3,2	$1,1,1,1$
Distance	$3+2=5$	$1+1+1+1=4$

[1] Assume $\pi^{*}=e$.

Simple Closed-form Choice Probability

Theorem Given a display set $S=\left\{x_{1}, x_{2}, \ldots, x_{M}\right\}$ be such that $x_{1}<x_{2}<\cdots<x_{M}$. Then

$$
\mathbb{P}\left(x_{i} \mid S\right)=\frac{q^{i-1}}{1+q+\ldots+q^{M-1}}
$$

B Relative ranking within display set matters.

Choice probabilities decay exponentially fast.

Consistency
 Parameter Learning

Given historical data $H_{T}=\left(S_{1}, x_{1}, \ldots, S_{T}, x_{T}\right)$
© MLE formulation:

$$
\sum_{t=1}^{T} \log \left(\frac{1-q}{1-q\left|S_{t}\right|}\right)+\log q \sum_{(i, j): i \neq j} I\left\{j \succ_{\pi} i\right\} \cdot w_{i j}
$$

where

- $w_{i j}:=\sum_{t=1}^{T} I\left\{\{i, j\} \subseteq S_{t}\right.$ and $\left.x_{t}=i\right\}$

$$
\begin{gathered}
\min \sum_{(i, j): i \neq j} w_{i j} x_{j i} \\
\text { s.t. } \quad \begin{array}{l}
x_{i j}+x_{j i}=1 \quad \forall 1 \leq i, j \leq n \\
x_{i j}+x_{j r}+x_{r i} \leq 2 \quad \forall 1 \leq i, j, r \leq n \\
x_{i j} \in\{0,1\} \quad \forall 1 \leq i, j \leq n \\
x_{i j}=1 \text { means } i>_{\pi} j .
\end{array} .
\end{gathered}
$$

- Intuitively, a positive $w_{i j}-w_{j i}$ is an indication that item i should be preferred to item j .
- Integer Programming Reformulation: Well-studied weighted feedback arc set problem on tournaments.
- Given π and set $\alpha=-\log q$, MLE is a concave function of α.

Ranked Choice Probability

Theorem Given a display set S and a π_{k} such that $R\left(\pi_{k}\right) \subseteq S$, we have

$$
\mathbb{P}\left(\pi_{k} \mid S\right)=q^{d_{S}\left(\pi_{k}\right)+L_{S}\left(\pi_{k}\right)} \cdot \frac{\psi(|S|-k, q)}{\psi(|S|, q)}
$$

where $d_{S}\left(\pi_{k}\right):=\sum_{i=1}^{k-1} I\left\{\pi_{k}(i)>\pi_{k}(i+1)\right\} \cdot(|S|-i), L_{s}\left(\pi_{k}\right):=\left|\left\{x \in R^{c}\left(\pi_{k}\right) \cap S: x<\pi_{k}(k)\right\}\right|$.

Learning on Ranked Choices

- Given historical data $H_{T}=\left(S_{1}, \pi_{k}^{1}, \ldots, S_{T}, \pi_{k}^{T}\right)$, where $\pi_{k}^{t}=\left(x_{1}^{t}, \ldots, x_{k}^{t}\right)$.

Theorem The MLE for the central ranking can be obtained from the same integer program with a generalized definition of $w_{i j}$ below

$$
w_{i j}=\sum_{t=1}^{T}\left[\sum_{h=1}^{k-1}\left(\left|S_{t}\right|-h\right) \cdot I\left\{x_{h}^{t}=i, x_{h+1}^{t}=j\right\}+I\left\{x_{k}^{t}=i\right\} \cdot I\left\{\{i, j\} \subseteq S_{t} \backslash\left\{x_{1}^{t}, \ldots, x_{k-1}^{t}\right\}\right\}\right]
$$

Nice Properties

Lemma 1 (Probability distribution of top-k rankings, $k \geq 1$)

$$
\lambda\left(\pi_{k}\right)=q^{d\left(\pi_{k}\right)+L\left(\pi_{k}\right)} \cdot \frac{\psi(n-k, q)}{\psi(n, q)}
$$

Lemma 2 (Sampling of Next Position)

Given π_{k} such that $\pi_{k}(k)=z$, the conditional probability for the $(k+1)$-positioned item is

$$
\mathbb{P}\left(\pi_{\mathrm{k}+1}=\pi_{\mathrm{k}} \oplus \mathrm{y} \mid \pi_{\mathrm{k}}\right)=\frac{\mathrm{q}^{\mathrm{h}(\mathrm{y} \mid \mathrm{z})-1}}{1+\mathrm{q}+\cdots+\mathrm{q}^{\mathrm{n}-\mathrm{k}-1}}
$$

where $h(y \mid z)=\left\{\begin{array}{ll}\sum_{x \in R^{\prime}\left(T_{k}\right)}\{\{z<x \leq y\} & \text { if } y>z \\ n-k-\sum_{x \in R^{\prime}\left(\pi_{k}\right)} 0\{y<x<z\} & \text { if } y<z\end{array}\right.$.

Efficient Sampling: $O(n k)$

- An example of 3 items, $\{1,2,3\}$.

$$
\lambda((1,2,3))=\frac{1}{1+q+q^{2}} \times \frac{1}{1+q} \times 1
$$

Experiments

- Experiment 1: Prediction Accuracy
- Experiment 2: Robustness Check
- Experiment 3: Efficient Estimation

Public Data Sets

* Two public ranking data sets about sushi preference ${ }^{[1]}$
- 5000 complete rankings over 10 kinds of sushi.
* 5000 top-10 rankings over 100 kinds of sushi.

Experiment 1: Prediction on Top-1 Choice

- Compare with Mallows model and Plackett-Luce model.
- Fit into mixture models.

Figure 1: Comparison of Explanation and Prediction Power for Top-1 choice

In each panel, the x-axis represents the number of clusters, and the y-axis represents the log-likelihood metric.

Experiment 2: Robustness Check on Top-k Choice

- The 10 Sushi data set. We conduct estimation on top-1, top-2 and top-3 ranked choices.
- Compare with Borda Count ${ }^{1}$ and Simple Count ${ }^{2}$
* Discrepancy: Average pairwise Kendall' Tau distance
- Setting 1: Display Sets: \{set with size $\geq k\}$ (Balanced Display)

	OAM	Borda Count	Simple Count
Top-3	$(8,5,6,3,2,1,4$	$9,7,10)$	$(8,3,6,1,2,5,4,9,7,10)$
$(8,3,1,6,2,5,4,9,7,10)$			
Top-2	$(8,5,6,3,2,1,49,7,10)$	$(8,3,5,6,1,2,4,9,7,10)$	$(8,3,6,1,5,2,4,9,7,10)$
Top-1	$(8,5,6,3,2,1,4,9,7,10)$	$(8,5,6,3,2,1,4,9,7,10)$	$(8,5,3,6,2,1,4,9,7,10)$
Discrepancy	0	4	4

- Setting 2: Display Sets: $\{[10],\{7,9,10\}\}$ (Unbalanced Display)

	OAM	Borda Count	Simple Count
Top-3	(8,5,3,2,6,1,4, 9,7,10)	(8,3,5,6.9.2, $1,7,4,10$)	9,7 10,8,3,5,6,2,1,4)
Top-2	(8,5,6,3,2,1,4, 9,7,10)	(8,5 9, $\left.\mathbf{b}^{\text {a }} 3,2,1,7,4,10\right)$	9,7 $8,10,5,6,3,2,1,4)$
Top-1	(8,5,2,6,1,3,4, 9, 7,10)	$(8,5 \times 9,7 \mid 2,6,1,3,4,10)$	(9,7 8, $8,2,6,10,1,3,4)$
Discrepancy	2.67	7.33	6

1. Borda Count: the score of an item is linear decreasing with its rank.
2. Simple Count: simply count the occurrences of each sushi in the top-k choice.

Experiment 3: Efficiency When n is large

* Training data is 5000 top- 10 choices out of 100 types of sushi.
- We use LP relaxation to speed up the IP.
* We bootstrap 10 times (each time drawing 10000 samples) and record the running times and optimality gaps ${ }^{[1]}$.

	Model Building Time (min)	Model Solving Time (min)	Optimality Gap
Average	21.10	4.20	1.47%
Max	21.19	4.50	1.79%
		$<5 \min$	$<2 \%$

On A Mallows-type Model For (Ranked) Choices

Yifan Feng
Department of Analytics and Operations NUS Business School
yifan.feng@nus.edu.sg

Yuxuan Tang
Institute of Operations Research and Analytics
National University of Singapore
yuxuan.tang@u.nus.edu

Abstract

We consider a preference learning setting where every participant chooses an ordered list of k most preferred items among a displayed set of candidates. (The set can be different for every participant.) We identify a distance-based ranking model for the population's preferences and their (ranked) choice behavior. The ranking model resembles the Mallows model but uses a new distance function called Reverse Major Index (RMJ). We find that despite the need to sum over all permutations, the RMJ-based ranking distribution aggregates into (ranked) choice probabilities with simple closed-form expression. We develop effective methods to estimate the model parameters and showcase their generalization power using real data, especially when there is a limited variety of display sets.

