

## Quantized Training of Gradient Boosting Decision Trees

Yu Shi, Guolin Ke, Zhuoming Chen, Shuxin Zheng, Tie-Yan Liu

Microsoft Research

## Intensive FP Operations in GBDT Training



- Problems in current GBDT training algorithm
  - · Intensive arithmetic operations of 32/64-bit FP numbers, unable to exploit low precision computation
  - · Large histograms causes low cache utility
  - Communication with 32/64-bit FP histograms when distributed training

### Quantize Gradients in GBDT

#### • Training of GBDT is based on gradient statistics

Histogram construction
Best split finding



$$\Delta \text{loss} = L_{\text{parent}} - L_{\text{left}} - L_{\text{right}} = \frac{G_{\text{left}}^2}{H_{\text{left}}} + \frac{G_{\text{right}}^2}{H_{\text{right}}} - \frac{G_{\text{parent}}^2}{H_{\text{parent}}}$$
$$G_{\text{leaf}} = \sum_{i \in \text{leaf}} g_{ii} \quad H_{\text{leaf}} = \sum_{i \in \text{leaf}} h_i$$

- Quantize 32-bit gradients  $g_i$  and  $h_i$  into low-bitwidth integers  $\hat{g}_i$  and  $\hat{h}_i$
- Accumulation of  $G_{\text{leaf}}$  and  $H_{\text{leaf}}$  can be done with lower cost (e.g., 8-bit, 16-bit, 32-bit)

## Quantized Training of GBDT

• Gradient Quantization: Equal-distance division of the gradient value range

$$\alpha = \frac{2 \cdot \max_{j} |g_{j}|}{B} \qquad \qquad \hat{g}_{i} \in \left\{-\frac{B}{2}, -\left(\frac{B}{2}-1\right), \dots, -1, 0, 1, \dots, \left(\frac{B}{2}-1\right), \frac{B}{2}\right\}$$
$$\beta = \frac{\max_{j} h_{j}}{B} \qquad \qquad \hat{h}_{i} \in \{0, 1, \dots, (B-1), B\}$$

Algorithm pipeline **Low-bitwidth Integer Operations Floating-point Number Operations** Histogram  ${\widetilde g}_i,\,{\widetilde h}_i$  $\begin{aligned} \widehat{G}_{\mathbf{S}_1} &= \delta_g \widetilde{G}_{\mathbf{S}_1} \\ \widehat{H}_{\mathbf{S}_1} &= \delta_h \widetilde{H}_{\mathbf{S}_1} \end{aligned}$ Construction Sweep Evaluate Quantization  $\widetilde{\Delta L}_{s \to s_1, s_2} = \frac{\widehat{G}_{s_1}^2}{2\widehat{H}_{s_1}^2} + \frac{\widehat{G}_{s_2}^2}{2\widehat{H}_{s_2}^2} - \frac{\widehat{G}_{s}^2}{2\widehat{H}_{s}^2}$ Histogram Split  $\begin{aligned} \tilde{G}_{S_1} &= \sum_{i \in S_1} \tilde{g}_i \\ \tilde{H}_{S_1} &= \sum_{i \in S_1} \tilde{h}_i \end{aligned}$  $\sum_i \tilde{g}_i$ ,  $\sum_i \tilde{h}_i$  in each bin  $g_i, h_i$ 

## **Quantization Methods**

Quantization: Cast more values into fewer values



- Round-to-nearest

$$\operatorname{RN}(x) = \begin{cases} \lfloor x \rfloor, & x < \lfloor x \rfloor + \frac{1}{2} \\ \\ \lceil x \rceil, & x \ge \lfloor x \rfloor + \frac{1}{2} \end{cases}$$

32-bit FP number 2-bit Integer

• Stochastic rounding

$$\mathrm{SR}\left(x\right) = \begin{cases} \lfloor x \rfloor, & \mathrm{w.p.} \quad \lceil x \rceil - x \\ \lceil x \rceil, & \mathrm{w.p.} \quad x - \lfloor x \rfloor \end{cases}$$

#### Analysis of Quantization Error

**Theorem 5.3** For loss functions with constant hessian value h > 0, if Assumption 5.2 holds for the subset  $\mathcal{D}_s$  in leaf s for some  $\gamma_s > 0$ , then with stochastic rounding and leaf-value refitting, for any  $\epsilon > 0$ , and  $\delta > 0$ , at least one of the following conclusions holds:

- 1. With any split of leaf s and its descendants, the resultant average of absolute values of prediction values by the tree in the current boosting iteration for data in  $\mathcal{D}_s$  is no greater than  $\epsilon/h$ .
- 2. For any split  $s \to s_1, s_2$  of leaf s, with a probability of at least  $1 \delta$ ,

$$\frac{\left|\widetilde{\mathcal{G}}_{s\to s_1, s_2} - \mathcal{G}_{s\to s_1, s_2}\right|}{\mathcal{G}_s^*} \le \frac{\max_{i\in[N]} |g_i| \sqrt{2\ln\frac{4}{\delta}}}{\gamma_s^2\epsilon \cdot 2^{B-1}} \left(\sqrt{\frac{1}{n_{s_1}}} + \sqrt{\frac{1}{n_{s_2}}}\right) + \frac{\left(\max_{i\in[N]} |g_i|\right)^2 \ln\frac{4}{\delta}}{\gamma_s^2\epsilon^2 n_s \cdot 4^{B-2}}.$$
 (9)

- Either the split won't change prediction values much
- Or the split gain is well estimated with quantized gradients

### System Implementation

#### • Hierarchical Histogram Buffers





#### System Implementation

• Packing Gradient and Hessian

Accumulate G and H in a single integer addition



Compared with vectorization for FP addition

- · Vectorization without slowing down CPU frequer
- $\cdot$  Applicable on GPU



# Accuracy of Quantized Training

| Bitwidth                     |          | Bina     | ry Classific | Regression | Ranking  |           |            |                |
|------------------------------|----------|----------|--------------|------------|----------|-----------|------------|----------------|
|                              | Higgs↑   | Epsilon↑ | Kitsune↑     | Criteo↑    | Bosch↑   | Year↓     | Yahoo LTR↑ | <b>LETOR</b> ↑ |
| 32-bit                       | 0.845694 | 0.950203 | 0.950561     | 0.803791   | 0.703101 | 8.956278  | 0.793857   | 0.524265       |
| 2-bit SR <sub>refit</sub>    | 0.845587 | 0.949472 | 0.952703     | 0.803293   | 0.700322 | 8.953388  | 0.788579   | 0.519268       |
| 3-bit SR <sub>refit</sub>    | 0.845725 | 0.949884 | 0.951309     | 0.803768   | 0.702756 | 8.937374  | 0.791077   | 0.522220       |
| 4-bit SR <sub>refit</sub>    | 0.845507 | 0.950049 | 0.950911     | 0.803783   | 0.703315 | 8.942898  | 0.792664   | 0.523796       |
| 5-bit SR <sub>refit</sub>    | 0.845706 | 0.950298 | 0.949229     | 0.803766   | 0.702971 | 8.948542  | 0.793166   | 0.524673       |
| 2-bit SR <sub>no refit</sub> | 0.846713 | 0.944509 | 0.952974     | 0.803750   | 0.700900 | 9.112302  | 0.764862   | 0.486193       |
| 3-bit SR <sub>no refit</sub> | 0.846040 | 0.949593 | 0.951385     | 0.803922   | 0.702501 | 8.990034  | 0.780041   | 0.507689       |
| 4-bit SR <sub>no refit</sub> | 0.845816 | 0.950127 | 0.951197     | 0.803812   | 0.703327 | 8.955256  | 0.787575   | 0.515767       |
| 5-bit SR <sub>no refit</sub> | 0.845842 | 0.950275 | 0.949794     | 0.803790   | 0.703226 | 8.952768  | 0.791631   | 0.520900       |
| 2-bit RN <sub>refit</sub>    | 0.795991 | 0.889149 | 0.962201     | 0.779906   | 0.686617 | 9.429014  | 0.765103   | 0.454894       |
| 3-bit RN <sub>refit</sub>    | 0.830506 | 0.944329 | 0.966606     | 0.782732   | 0.688899 | 9.062854  | 0.772364   | 0.476726       |
| 4-bit RN <sub>refit</sub>    | 0.840747 | 0.949946 | 0.961938     | 0.795803   | 0.691469 | 8.968694  | 0.777347   | 0.487256       |
| 5-bit RN <sub>refit</sub>    | 0.843820 | 0.950457 | 0.962427     | 0.802438   | 0.698954 | 8.952418  | 0.784333   | 0.494951       |
| 2-bit RN <sub>no refit</sub> | 0.836683 | 0.925220 | 0.946016     | 0.768338   | 0.704445 | 10.685840 | 0.632058   | 0.203732       |
| 3-bit RN <sub>no refit</sub> | 0.843482 | 0.946850 | 0.940961     | 0.791709   | 0.708724 | 9.377560  | 0.732487   | 0.350127       |
| 4-bit RN <sub>no refit</sub> | 0.845788 | 0.949676 | 0.949228     | 0.802689   | 0.703718 | 8.969828  | 0.765432   | 0.437317       |
| 5-bit RN <sub>no refit</sub> | 0.845765 | 0.950307 | 0.952420     | 0.803645   | 0.698419 | 8.965400  | 0.782608   | 0.485752       |

# Speedup of Quantized Training

|                    |                 |       |        | -       |       |         |      |           |       |
|--------------------|-----------------|-------|--------|---------|-------|---------|------|-----------|-------|
|                    | Algorithm       | Bosch | Criteo | Epsilon | Higgs | Kitsune | Year | Yahoo LTR | LETOR |
|                    | XGBoost         | 73    | 373    | 125     | 28    | 195     | 15   | 41        | 48    |
|                    | CatBoost        | 21    | 199    | 100     | 59    | 81      | 32   | 58        | N/A   |
| GPU total time     | LightGBM+       | 22    | 101    | 86      | 28    | 77      | 24   | 30        | 41    |
|                    | LightGBM+ 2-bit | 13    | 62     | 38      | 24    | 37      | 18   | 23        | 33    |
|                    | LightGBM+ 3-bit | 13    | 60     | 39      | 24    | 39      | 18   | 24        | 34    |
|                    | LightGBM+ 4-bit | 13    | 59     | 39      | 24    | 40      | 17   | 26        | 33    |
|                    | LightGBM+ 5-bit | 12    | 59     | 41      | 24    | 40      | 17   | 25        | 34    |
| CPU total time     | XGBoost         | 326   | 1243   | 2697    | 201   | 606     | 62   | 213       | 155   |
|                    | CatBoost        | 2829  | 11880  | 1659    | 1607  | 2023    | 130  | 761       | 1283  |
|                    | LightGBM        | 109   | 863    | 846     | 149   | 454     | 23   | 136       | 166   |
|                    | LightGBM 2-bit  | 84    | 764    | 808     | 136   | 309     | 24   | 95        | 125   |
|                    | LightGBM 3-bit  | 87    | 730    | 775     | 125   | 289     | 23   | 101       | 123   |
|                    | LightGBM 4-bit  | 87    | 706    | 775     | 131   | 291     | 23   | 102       | 129   |
|                    | LightGBM 5-bit  | 84    | 678    | 776     | 127   | 338     | 22   | 105       | 128   |
| CDUU: de anom dime | LightGBM+       | 17    | 70     | 46      | 11    | 54      | 9    | 11        | 17    |
| GPU Histogram time | LightGBM+ 2-bit | 8     | 21     | 12      | 4     | 16      | 4    | 8         | 10    |
| CDI Histogram time | LightGBM        | 98    | 629    | 737     | 94    | 339     | 12   | 108       | 109   |
|                    | LightGBM 2-bit  | 72    | 458    | 708     | 68    | 203     | 10   | 67        | 68    |



(b) Criteo

# Thank You