Learning on the Edge: Online Learning with Stochastic Feedback Graphs

Emmanuel Esposito^{1,2} Federico Fusco³ Dirk van der Hoeven¹ Nicolò Cesa-Bianchi¹ ¹Università degli Studi di Milano ²Istituto Italiano di Tecnologia ³Sapienza Università di Roma

A Concrete Example

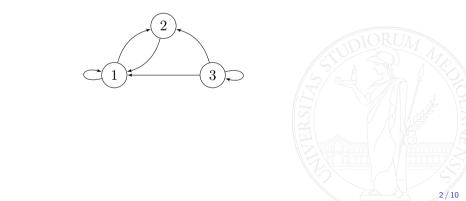
Faulty bandits:

- Central agent repeatedly performing a decision-making task (e.g., daily)
- Sensors s_1, \ldots, s_K communicating daily with the agent
- \blacktriangleright Every day, agent sends a measurement request to some sensor s_i
- ▶ Communication with s_i fails independently w.p. $1 \varepsilon_i$
- If the request is accepted, s_i sends back a measurement

Feedback Graph

Finite set of actions $V = \{1, \ldots, K\}$.

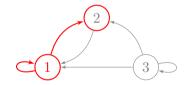
A directed graph G = (V, E) over actions determines the feedback structure.



Feedback Graph

Finite set of actions $V = \{1, \ldots, K\}$.

A directed graph G = (V, E) over actions determines the feedback structure.

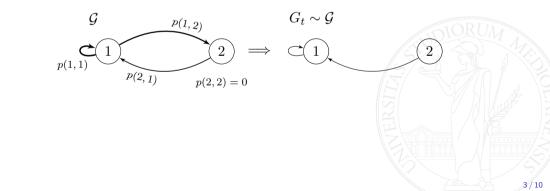


At any time t, the choice $I_t \in V$ allows to observe actions in $N_G^{\text{out}}(I_t) = \{i \in V : (I_t, i) \in E\}$.

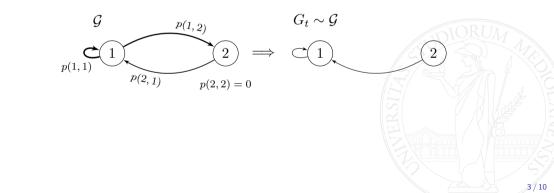
At each round $t = 1, \ldots, T$:

▶ learner plays action $I_t \sim \pi_t$

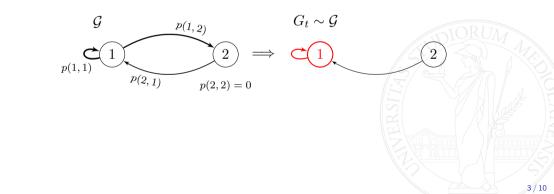
- ▶ learner plays action $I_t \sim \pi_t$
- environment generates $G_t = (V, E_t) \sim \mathcal{G}$



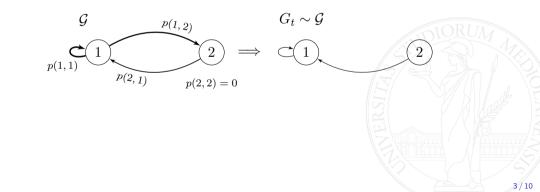
- ▶ learner plays action $I_t \sim \pi_t$
- environment generates $G_t = (V, E_t) \sim \mathcal{G}$
- ▶ learner incurs loss $\ell_t(I_t) \in [0, 1]$ and observes $\{\ell_t(i) : i \in N_{G_t}^{\text{out}}(I_t)\}$



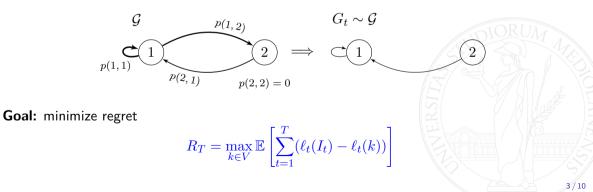
- ▶ learner plays action $I_t \sim \pi_t$
- ▶ environment generates $G_t = (V, E_t) \sim \mathcal{G}$
- ▶ learner incurs loss $\ell_t(I_t) \in [0, 1]$ and observes $\{\ell_t(i) : i \in N_{G_t}^{\text{out}}(I_t)\}$



- ▶ learner plays action $I_t \sim \pi_t$
- environment generates $G_t = (V, E_t) \sim \mathcal{G}$
- ▶ learner incurs loss $\ell_t(I_t) \in [0, 1]$ and observes $\{\ell_t(i) : i \in N_{G_t}^{\text{out}}(I_t)\}$
- ▶ learner updates $\pi_t \mapsto \pi_{t+1}$



- ▶ learner plays action $I_t \sim \pi_t$
- environment generates $G_t = (V, E_t) \sim \mathcal{G}$
- ▶ learner incurs loss $\ell_t(I_t) \in [0, 1]$ and observes $\{\ell_t(i) : i \in N_{G_t}^{\text{out}}(I_t)\}$
- ▶ learner updates $\pi_t \mapsto \pi_{t+1}$



Online Learning with Feedback Graphs

Families of (deterministic) feedback graphs:

• Strongly observable: all actions \hat{O} or $\hat{\nabla}$ Regret: $\tilde{O}(\sqrt{\alpha T})$ where α is the independence number.

Online Learning with Feedback Graphs

Families of (deterministic) feedback graphs:

- Strongly observable: all actions $\hat{\mathcal{O}}$ or $\overset{\bullet}{\bigvee}$ Regret: $\tilde{O}(\sqrt{\alpha T})$ where α is the independence number.
- Weakly observable: all actions observed but not strongly observable. Regret: $\tilde{O}(\delta^{1/3}T^{2/3})$ where δ is the weak domination number.

Online Learning with Feedback Graphs

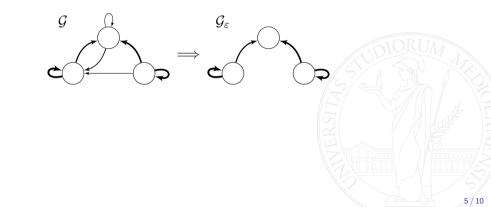
Families of (deterministic) feedback graphs:

- Strongly observable: all actions $\stackrel{\circ}{\bigcirc}$ or $\stackrel{\circ}{\searrow}$ Regret: $\tilde{O}(\sqrt{\alpha T})$ where α is the independence number.
- Weakly observable: all actions observed but not strongly observable. Regret: $\tilde{O}(\delta^{1/3}T^{2/3})$ where δ is the weak domination number.
- Non-observable: at least an action not observed. Regret: Ω(T).

Thresholding and Support

Consider a stochastic feedback graph $\mathcal{G} = \{p(i, j) : i, j \in V\}.$

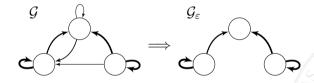
Thresholded stochastic feedback graph $\mathcal{G}_{\varepsilon} = \{p(i, j) \mathbb{I}_{\{p(i, j) \ge \varepsilon\}} : i, j \in V\}$



Thresholding and Support

Consider a stochastic feedback graph $\mathcal{G} = \{p(i, j) : i, j \in V\}.$

Thresholded stochastic feedback graph $\mathcal{G}_{\varepsilon} = \{p(i,j)\mathbb{I}_{\{p(i,j) \geq \varepsilon\}} : i, j \in V\}$



The support of \mathcal{G} is $\operatorname{supp}(\mathcal{G}) = G = (V, E)$ where $E = \{(i, j) \in V \times V : p(i, j) > 0\}$. Note: all "deterministic" (graph-theoretical) notions may extend to \mathcal{G} via $\operatorname{supp}(\mathcal{G})$.

EDGECATCHER: From Stochastic to Deterministic

Let ${\mathcal A}$ be a learning algorithm for OL with deterministic feedback graph.

Initial round-robin to learn optimal threshold ε^* and a "good estimate" $\hat{\mathcal{G}}$ for \mathcal{G} .

EDGECATCHER: From Stochastic to Deterministic

Let \mathcal{A} be a learning algorithm for OL with deterministic feedback graph.

Initial round-robin to learn optimal threshold ε^* and a "good estimate" $\hat{\mathcal{G}}$ for \mathcal{G} .

Blocks reduction: given threshold ε and $\hat{\mathcal{G}}$

Meta-instance for \mathcal{A} with graph $\operatorname{supp}(\hat{\mathcal{G}}_{\varepsilon})$ and losses $\hat{c}_1, \ldots, \hat{c}_N$.

EDGECATCHER: Regret Bound

The blocks reduction, given ε and $\hat{\mathcal{G}}$, achieves

 $R_T \leq \Delta R_N^{\mathcal{A}}(\operatorname{supp}(\hat{\mathcal{G}}_{\varepsilon})) + \Delta$

Setting $\Delta = \Theta(\frac{1}{\varepsilon^*} \ln(KT))$, EDGECATCHER achieves

 $R_T = \tilde{O}\left(\min\left\{\min_{\varepsilon} \sqrt{(\alpha(\mathcal{G}_{\varepsilon})/\varepsilon)T}, \ \min_{\varepsilon} (\delta(\mathcal{G}_{\varepsilon})/\varepsilon)^{1/3}T^{2/3}\right\}\right)$

Nearly minimax-optimal in T, ε , and graph parameters.

OTCG : Be Optimistic If You Can, Commit If You Must

Assumption: observe G_t at the end of round t in addition to losses.

We design an algorithm based on Exp3.G using new importance-weighted estimates $\tilde{\ell}_t(i)$ with upper confidence bounds $\hat{p}_t(j,i)$ for p(j,i):

$$ilde{\ell}_t(i) = rac{\mathbb{I}_{\{I_t
ightarrow i ext{ in both } G_t ext{ and } \hat{G}_t\}}}{\sum_{j \stackrel{\hat{G}_{t_j}}{\longrightarrow} i} \pi_t(j) \hat{p}_t(j,i)} \ell_t(i)$$

OTCG : Be Optimistic If You Can, Commit If You Must

Assumption: observe G_t at the end of round t in addition to losses.

We design an algorithm based on Exp3.G using new importance-weighted estimates $\tilde{\ell}_t(i)$ with upper confidence bounds $\hat{p}_t(j,i)$ for p(j,i):

$$ilde{\ell}_t(i) = rac{\mathbb{I}_{\{I_t o i ext{ in both } G_t ext{ and } \hat{G}_t\}}}{\sum_{j \stackrel{\hat{G}_t}{\longrightarrow} i} \pi_t(j) \hat{p}_t(j,i)} \ell_t(i)$$

By an empirical Bernstein's bound,

$$\hat{p}_t(j,i) = \tilde{p}_t(j,i) + C_1 \sqrt{\frac{\ln(KT)}{t-1}} \tilde{p}_t(j,i) + C_2 \frac{\ln(KT)}{t-1}$$

where $\tilde{p}_t(j, i) = \frac{1}{t-1} \sum_{s=1}^{t-1} \mathbb{I}_{\{(j,i) \in E_s\}}$.

Optimistically assume strong observability, then commit to weak observability if better.

Regret:

$$R_T = \tilde{O}\left(\min\left\{\min_{\varepsilon} \sqrt{\alpha_{\mathsf{w}}(\mathcal{G}_{\varepsilon})T}, \ \min_{\varepsilon} \{\delta_{\mathsf{w}}(\mathcal{G}_{\varepsilon})^{1/3}T^{2/3} + \sqrt{\sigma(\mathcal{G}_{\varepsilon})T}\}\right\}\right)$$

 α_w and δ_w are improved, weighted versions of α and δ containing the dependency on edge probabilities.

Conclusions and Future Work

- \blacktriangleright Our lower bounds show that $\rm EdgeCatcher$ and $\rm otcG$ are nearly minimax-optimal
- \blacktriangleright $\rm OTCG$ improves with tighter graph-theoretical parameters

Conclusions and Future Work

- \blacktriangleright Our lower bounds show that ${\rm EDGECATCHER}$ and ${\rm OTCG}$ are nearly minimax-optimal
- ▶ OTCG improves with tighter graph-theoretical parameters

Questions:

- ► Can we use blocks of variable size in EDGECATCHER?
- Can we prove instance-dependent lower bounds matching the regret of OTCG?
- ▶ Can we remove the need to observe the realized graph $G_t \sim \mathcal{G}$ in OTCG?

Conclusions and Future Work

- \blacktriangleright Our lower bounds show that $\operatorname{EdgeCatcher}$ and otcG are nearly minimax-optimal
- ▶ OTCG improves with tighter graph-theoretical parameters

Questions:

- ► Can we use blocks of variable size in EDGECATCHER?
- Can we prove instance-dependent lower bounds matching the regret of OTCG?
- ▶ Can we remove the need to observe the realized graph $G_t \sim \mathcal{G}$ in OTCG?

