General **cutting planes** for bound-propagation based **neural network verification**

Huan Zhang* (CMU), Shiqi Wang* (Columbia), Kaidi Xu* (Drexel University) Linyi Li (UIUC), Bo Li (UIUC), Suman Jana (Columbia), Cho-Jui Hsieh (UCLA), Zico Kolter (CMU/Bosch) (*co-first authors)

> Paper: <u>arxiv.org/pdf/2208.05740.pdf</u> Code: <u>abcrown.org</u>

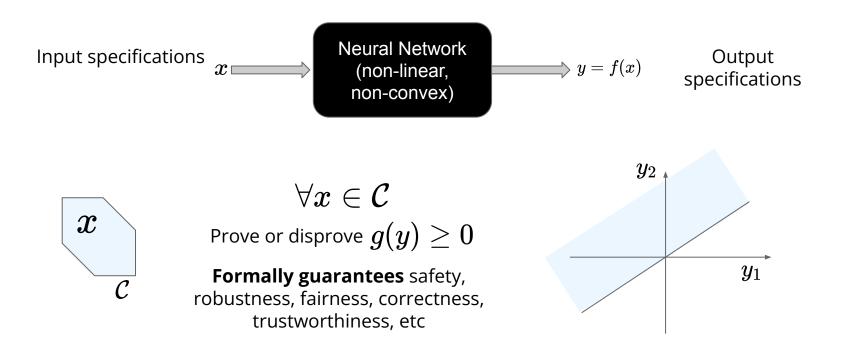
Winner of International Verification of Neural Networks Competitions (VNN-COMP 2021,2022)

Huan Zhang Carnegie Mellon University

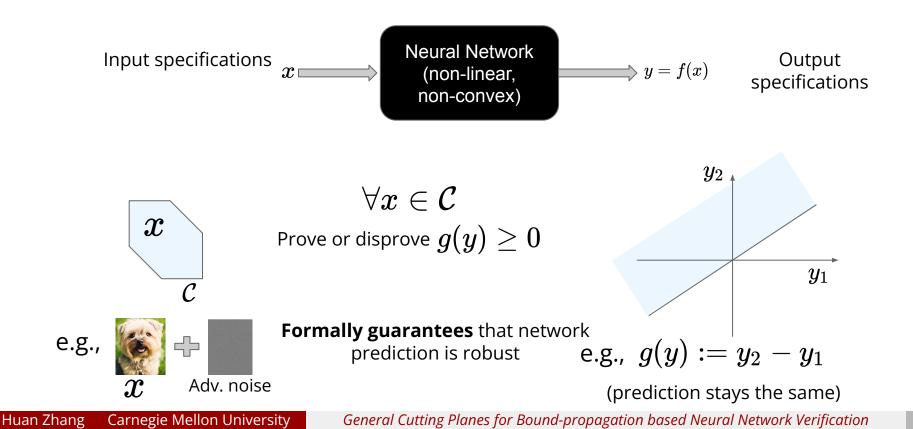
NEURAL INFORMATION

PROCESSING SYSTEMS

What is Neural Network Verification?



What is Neural Network Verification?



Why the Verification Problem is Challenging?

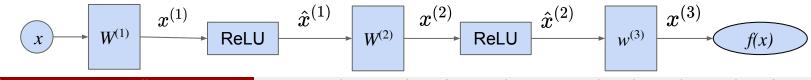
This is the fundamental problem we want to solve (Wong & Kolter 2018, Salman et al. 2019):

$$f^* = \min x^{(L)}$$
 Last layer output f(x), at layer L
s.t. $x^{(i)} = W^{(i)} \hat{x}^{(i-1)} + b^{(i)}$ $i \in \{1, \cdots, L\}$ Linear constraints
 $\hat{x}^{(i)} = \sigma(x^{(i)})$ $i \in \{1, \cdots, L-1\}$ ReLU can be encoded as a mixed
integer programming (MIP) problem
(Tieng et al. 2017) but very slow and

post-activation

$$\hat{x}^{(0)}=x, \quad x\in \mathcal{C}$$
 - Input set .

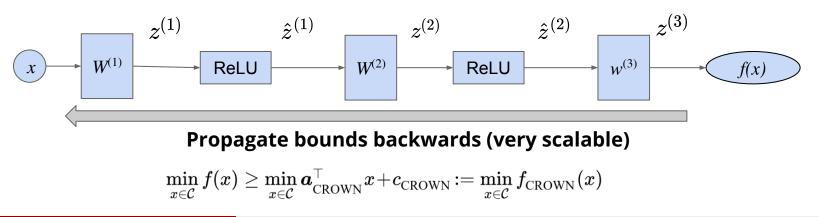
(Tjeng et al. 2017), but very slow and can hardly scale up



Huan Zhang **Carnegie Mellon University**

Bound-propagation-based neural network verifiers

- Solve *relaxed* problems: **GPU accelerated**, **without LP/MIP solvers**
 - **CROWN** (Zhang et al., 2018) initially for feedforward networks
 - **auto_LiRPA** (Xu et al., 2020): Generalization to general computational graphs (2019)
 - ο *α***-CROWN** (Xu et al., 2021) with optimizable and tighter bounds



Huan Zhang Carnegie Mellon University

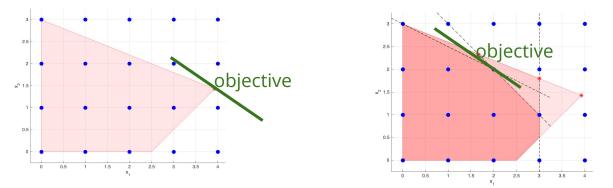
General Cutting Planes for Bound-propagation based Neural Network Verification

Bound-propagation-based neural network verifiers

- Solve *relaxed* problems: **GPU accelerated**, **without LP/MIP solvers**
 - **CROWN** (Zhang et al., 2018) initially for feedforward networks
 - **auto_LiRPA** (Xu et al., 2020): Generalization to general computational graphs (2019)
 - *α***-CROWN** (Xu et al., 2021) with optimizable and tighter bounds
- Branch and bound (BaB)
 - β-CROWN (Wang et al., 2021): bound propagation based BaB, won
 VNN-COMP 2021
- Cutting plane methods
 - GCP-CROWN, this work, won VNN-COMP 2022
 - Aim to solve more difficult verification problems

Why using cutting plane methods for NN verification?

- Cutting plane method is an MIP solving technique that produces tighter bounds, which can be very helpful for NN verification
- We found cases where a MIP solver can solve instantly with cutting planes, while previous SOTA verifier (β -CROWN) cannot verify them even with 10min
- However, existing bound propagation based methods **cannot handle general cutting planes** used in MIP solvers



Adding cutting plane constraints improves bounds for a MIP problem

Huan Zhang Carnegie Mellon University

General Cutting Planes for Bound-propagation based Neural Network Verification

NN Verification with cutting plane constraint

• Avoid using a LP solver, need to solve this problem using bound propagation

$$\begin{split} & \overbrace{j^{*}}^{f^{*}} = \min_{x,\hat{x},\mathbf{z}} f(x) \quad \text{ s.t. } f(x) = x^{(L)}; \quad \hat{x}^{(0)} = x; \quad x \in \mathcal{C}; \\ & \mathbf{x}^{(i)} = \mathbf{W}^{(i)} \hat{x}^{(i-1)} + \mathbf{b}^{(i)}; \quad i \in [L], \\ & \hat{x}_{j}^{(i)} \geq 0; \quad j \in \mathcal{I}^{(i)}, i \in [L-1] \\ & \hat{x}_{j}^{(i)} \geq x_{j}^{(i)}; \quad j \in \mathcal{I}^{(i)}, i \in [L-1] \\ & \hat{x}_{j}^{(i)} \leq u_{j}^{(i)} z_{j}^{(i)}; \quad j \in \mathcal{I}^{(i)}, i \in [L-1] \\ & \hat{x}_{j}^{(i)} \leq x_{j}^{(i)} - l_{j}^{(i)}(1 - z_{j}^{(i)}); \quad j \in \mathcal{I}^{(i)}, i \in [L-1] \\ & \hat{x}_{j}^{(i)} \leq x_{j}^{(i)} - l_{j}^{(i)}(1 - z_{j}^{(i)}); \quad j \in \mathcal{I}^{(i)}, i \in [L-1] \\ & \hat{x}_{j}^{(i)} \leq x_{j}^{(i)}; \quad j \in \mathcal{I}^{-(i)}, i \in [L-1] \\ & \hat{x}_{j}^{(i)} = x_{j}^{(i)}; \quad j \in \mathcal{I}^{-(i)}, i \in [L-1] \\ & \hat{x}_{j}^{(i)} = 0; \quad j \in \mathcal{I}^{-(i)}, i \in [L-1] \\ & \hat{x}_{j}^{(i)} = 0; \quad j \in \mathcal{I}^{-(i)}, i \in [L-1] \\ & \sum_{i=1}^{L^{-1}} \left(H^{(i)} x^{(i)} + G^{(i)} \hat{x}^{(i)} + Q^{(i)} \mathbf{z}^{(i)} \right) \leq d \\ & \text{Additional } N \text{ cutting plane constraints} \end{split}$$

Existing bound propagation methods cannot handle this constraint

Huan Zhang Carnegie Mellon University

Algorithm

GCP-CROWN: bound-propagation with cutting planes

Theorem 3.1 (Bound propagation with general cutting planes). *Given any optimizable parameters*

$$0 \le \alpha_j^{(i)} \le 1$$
 and $\beta \ge 0$, f_{LP-cut}^* is lower bounded by the following objective function: Conceptually inspired by (Wong & Kolter 2018)
Optimizable variables

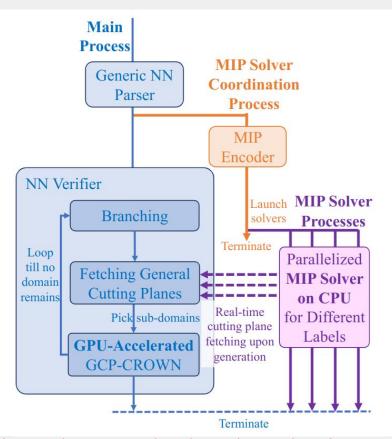
$$g(\alpha, \beta) = -\epsilon \| \boldsymbol{\nu}^{(1)\top} \mathbf{W}^{(1)} \boldsymbol{x}_0 \|_1 - \sum_{i=1}^{L} \boldsymbol{\nu}^{(i)} \mathbf{b}^{(i)} - \beta^\top \mathbf{d} + \sum_{i=1}^{L-1} \sum_{j \in \mathcal{I}^{(i)}} h_j^{(i)}(\beta)$$
where variables $\boldsymbol{\nu}^{(i)}$ are obtained by propagating $\boldsymbol{\nu}^{(L)} = -1$ throughout all $i \in [L-1]$:
 \mathbf{v} is the propagated variable (bound propagation)
 $\mathbf{v}_j^{(i)} = -\beta^\top \mathbf{H}_{i,j}^{(i)}, j \in \mathcal{I}^{-(i)}$
 $\mathbf{v}_j^{(i)} = \pi_j^{(i)^*} - \alpha_j^{(i)} [\hat{\nu}_j^{(i)}]_- - \beta^\top \mathbf{H}_{i,j}^{(i)}, j \in \mathcal{I}^{(i)}$
 $\mathbf{v}_j^{(i)} = \pi_j^{(i)^*} - \alpha_j^{(i)} [\hat{\nu}_j^{(i)}]_- - \beta^\top \mathbf{H}_{i,j}^{(i)}, j \in \mathcal{I}^{(i)}$ with H and G being 0)
Here $\hat{\nu}_j^{(i)}, \pi_j^{(i)^*}$ and $h_j^{(i)}(\beta)$ are defined for each unstable neuron $j \in \mathcal{I}^{(i)}$ (see paper for detailed formulation)
Entire bound propagation implemented on GPU
 $\mathbf{v}_i^{(2)} = -\mathbf{v}_j^{(1)} + \mathbf{e}_i^{(2)} + \mathbf{e}_i^{(2)} + \mathbf{e}_i^{(2)} + \mathbf{e}_i^{(3)} + \mathbf{e}_i^{(3)}$

How to find cutting planes?

Cutting plane constraint:

$$\sum_{i=1}^{L-1} \left(m{H}^{(i)}m{x}^{(i)} + m{G}^{(i)}\hat{m{x}}^{(i)} + m{Q}^{(i)}m{z}^{(i)}
ight) \leq m{d}$$

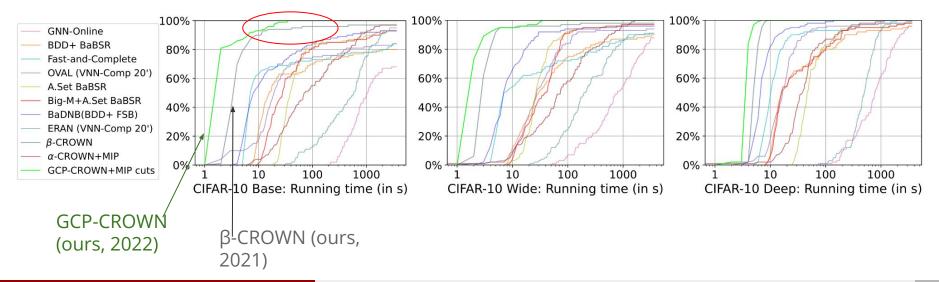
- So far, we export the cutting planes from a MIP solver running in parallel
- Future work: more efficient ways to find cutting planes; specialized cutting planes for NN verification



Results: VNN-COMP 2020 (oval20)

- Completely solved (no timeout for the first time in literature)
- average time of <5 seconds per instances

GCP-CROWN solved 100% instances within ~20s β -CROWN (VNN-COMP 2021 winner) cannot solve 3 hard instances even using a hour



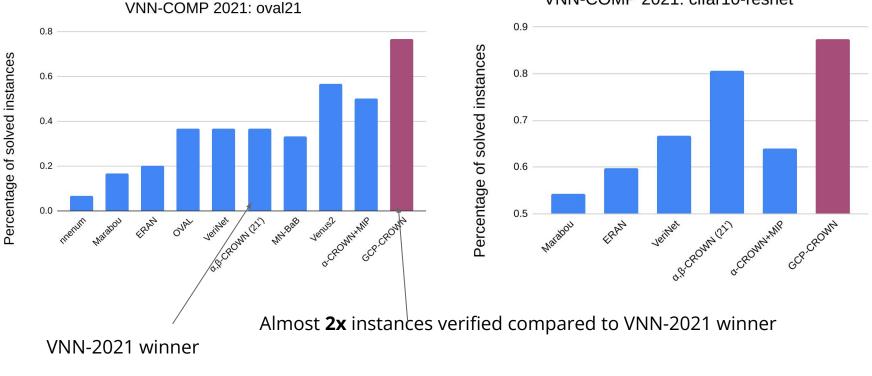
Huan Zhang Carnegie Mellon University

Results

Results: VNN-COMP 2021 models

Huan Zhang

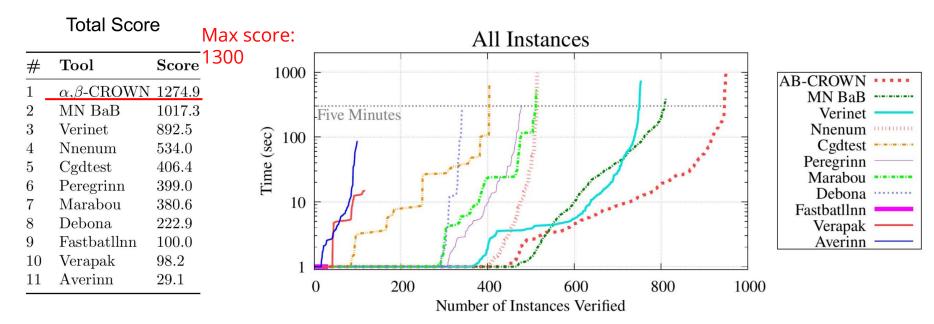
Carnegie Mellon University



VNN-COMP 2021: cifar10-resnet

Results: VNN-COMP 2022 (latest competition)

GCP-CROWN has been **integrated into our α,β-CROWN verifier**, **winner of VNN-COMP 2022** (<u>https://sites.google.com/view/vnn2022</u>)



Huan Zhang Carnegie Mellon University

General Cutting Planes for Bound-propagation based Neural Network Verification

Thank you! Email: huan@huan-zhang.com

α,β-CROWN Verification Tool: <u>abCROWN.org</u>

(includes implementations of CROWN, α -CROWN, β -CROWN, GCP-CROWN and BaB-Attack)