On Sample Optimality in Personalized Collaborative and Federated Learning Neurips 2022

Mathieu Even, Laurent Massoulié, Kevin Scaman

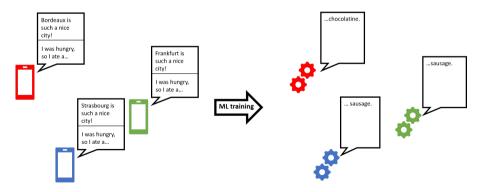
Argo team, Inria Paris

Ínaía -

M. Even, L. Massoulié, K.Scamai

Personalized Federated Learning (motivation)

- Objective: Train ML models from multiple data sources.
- > One local model is learnt for each user, depending on its past activity.
- User datasets can be small, need to collaborate.



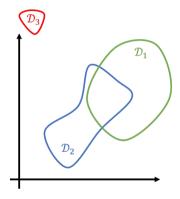
Personalized Federated Learning (setup)

Setup

Let (D_i)_{i∈[[1,N]} be N data distributions on a space Ξ, and ℓ : ℝ^d × Ξ → ℝ a str. convex and smooth loss function. Our goal is to minimize the local objective functions

$$\forall i \in [\![1, N]\!], \qquad \min_{x \in \mathbb{R}^d} \quad f_i(x) = \mathbb{E}_{\xi_i \sim \mathcal{D}_i} \left[\ell(x, \xi_i) \right]$$

- All agents receive a sample $\xi_{i,k} \sim \mathcal{D}_i$ at iteration k > 0.
- Agent *i* may compute and communicate gradients $g_i^k(x) = \nabla_x \ell(x, \xi_i^k)$ for any $x \in \mathbb{R}^d$.
- We focus on **sample complexity**.



Our objectives in this work

Theoretical questions

- How fast can we train our models?
- How does it depend on the data distributions?
- How to encode data dissimilarity?

Our objectives in this work

Theoretical questions

- How fast can we train our models?
- How does it depend on the data distributions?
- How to encode data dissimilarity?

Our contributions

- Lower and upper bounds on the optimal sample complexity
- ▶ IPMs can capture the **data dissimilarity** w.r.t. the optimization objective.
- Gradient filtering approaches are optimal while communication efficient!

Distances between distributions (1)

How to encode data dissimilarity in an optimization context?

Definition (Integral Probability Metrics, Muller, 1997)

For \mathcal{H} a set of functions from Ξ to \mathbb{R}^d and $\mathcal{D}, \mathcal{D}'$ two probability distributions on Ξ , let

$$d_{\mathcal{H}}(\mathcal{D}, \mathcal{D}') = \sup_{h \in \mathcal{H}} \left\| \mathbb{E} \left[h(\xi) - h(\xi') \right] \right\|$$

where $\xi \sim D$ and $\xi' \sim D'$. $d_{\mathcal{H}}$ is a pseudo-distance on the set of probability measures on Ξ .

Distances between distributions (1)

How to encode data dissimilarity in an optimization context?

Definition (Integral Probability Metrics, Muller, 1997)

For \mathcal{H} a set of functions from Ξ to \mathbb{R}^d and $\mathcal{D}, \mathcal{D}'$ two probability distributions on Ξ , let

$$d_{\mathcal{H}}(\mathcal{D}, \mathcal{D}') = \sup_{h \in \mathcal{H}} \left\| \mathbb{E} \left[h(\xi) - h(\xi') \right] \right\|$$

where $\xi \sim \mathcal{D}$ and $\xi' \sim \mathcal{D}'$. $d_{\mathcal{H}}$ is a pseudo-distance on the set of probability measures on Ξ .

Intuition

- Contains many standard distances for distributions, such as the Wasserstein (or earth mover's) distance, total variation, or maximum mean discrepancies.
- Measures how much a function class can distinguish the two distributions.

Distances between distributions (2)

Application to model training and optimization

- Most optimization algorithms rely on gradients to perform training.
- > We want to measure how much gradients see the two distributions as different.
- We can take the function class \mathcal{H} as our **knowledge on the gradients** $\nabla_x \ell(x,\xi)$!
- For example, for a quadratic models, the gradient is linear.

Assumption (Distribution-based dissimilarities)

Let $\mathcal H$ be such that, $\forall i=1,\ldots,N$, and x_i^\star a minimizer of f_i , we have

$$\left(\xi\in\Xi\mapsto\nabla_x\ell(x_i^\star,\xi)\right)\in\mathcal{H}$$

Moreover, there exists $(b_{ij})_{1 \leq i,j \leq N}$ such that, $\forall (i,j) \in [\![1,N]\!]^2$, $d_{\mathcal{H}}(\mathcal{D}_i, \mathcal{D}_j) \leq b_{ij}$.

Our results (1)

Lower bound on the sample complexity

- ▶ Let $(b_{ij})_{ij}$ fixed non negative weights, $\varepsilon > 0$ target precision, and $i \in \llbracket 1, N \rrbracket$ fixed.
- There exists "difficult" instantiations of our problem based on distributions $\mathcal{D}_1, \ldots, \mathcal{D}_N$ that verify the dissimilarity assumption for weights (b_{ij}) , such that any "reasonable algorithm" that outputs a model x_i for user i using K_{ε} samples per agent, must verify:

$$K_{\varepsilon} \ge \frac{C}{\mathcal{N}_i^{\varepsilon}(b^2)},$$

where C is a constant that depends on the variance of local gradients noise and functions regularity assumptions, and $\mathcal{N}_i^{\varepsilon}(b^2)$ is the number of agents j that verify $b_{ij}^2 \leq \varepsilon$

Our results (2)

The All-for-all algorithm

Let $(W_{ij})_{1 \le i,j \le N}$ be a $n \times n$ matrix with non negative entries and $\eta > 0$. Consider the iterates generated with $x^{k+1} = x^k - \eta W g^k$ *i.e.*,

$$x_i^{k+1} = x_i^k - \eta \sum_{j=1}^N W_{ij} \nabla_x \ell(x_j^k, \xi_j^k)$$

 \implies Optimal collaboration speedup in average amongst clients, provided that η , W_{ij} tuned with b_{ij} from the IPM-based data-dissimilarity assumptions.

Our results (3)

The estimation $d_{\mathcal{H}}(\mathcal{D}_i, \mathcal{D}_j)$ based on S samples of each local distributions can be done up to a statistical precision that depends on the complexity of the function space \mathcal{H} : $1/\sqrt{S}$ for finite-dimensional \mathcal{H} and some MMDs, $1/S^{1/d}$ for Wassertein distances, etc.

Case of quadratic linear regression

For a number S of samples $(\xi_i^s)_{i \in [n], s \in [S]}$, use the following estimates $\hat{\mu}_i, \hat{b}_{ij}$ and weights $W_{ij} = \hat{\lambda}_{ij}$ in the All-for-all algorithm:

$$\hat{\mu}_{i} = \frac{1}{S} \sum_{s=1}^{S} \xi_{i,s} , \quad \hat{b}_{ij} = \|\hat{\mu}_{i} - \hat{\mu}_{j}\| , \quad \hat{\lambda}_{ij} = \frac{\mathbb{1}_{[[\hat{b}_{ij}^{2} \leq u]]}}{\sum_{\ell=1}^{N} \mathbb{1}_{[[\hat{b}_{i\ell}^{2} \leq u]]}}$$

 \implies Still optimal collaboration speedup under structural assumptions on the agents.

Take home message

Conclusion

- Communication to **neighboring agents** w.r.t. $d_{\mathcal{H}}(\mathcal{D}_i, \mathcal{D}_j)$ is sufficient, with a neighborhood radius that decreases with the desired precision ε .
- Best speedup proportional to the number of neighbors $\mathcal{N}_i^{\varepsilon}(b^2)$.
- This speedup can be achieved with limited communication and local storage with the All-for-all algorithm.
- In this setup, no asymptotic speedup is possible when all local distributions \mathcal{D}_i differ (when $\varepsilon < \min_{ij} d_{\mathcal{H}}(\mathcal{D}_i, \mathcal{D}_j)$, we have $\mathcal{N}_i^{\varepsilon}(b^2) = 1$).

For more details

Come at our poster and read our paper!

Thank you for your attention!