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M. Even, L. Massoulié, K.Scaman Neurips 2022 1/11



Personalized Federated Learning

Personalized Federated Learning (motivation)

§ Objective: Train ML models from multiple data sources.

§ One local model is learnt for each user, depending on its past activity.

§ User datasets can be small, need to collaborate.
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Personalized Federated Learning

Personalized Federated Learning (setup)

Setup

§ Let pDiqiPJ1,NK be N data distributions on a space Ξ,

and ℓ : Rd ˆ Ξ Ñ R a str. convex and smooth loss
function. Our goal is to minimize the local objective
functions

@i P J1, NK, min
xPRd

fipxq “ Eξi„Di
rℓpx, ξiqs

§ All agents receive a sample ξi,k „ Di at iteration k ą 0.

§ Agent i may compute and communicate gradients
gki pxq “ ∇xℓpx, ξ

k
i q for any x P Rd.

§ We focus on sample complexity.
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Personalized Federated Learning

Our objectives in this work

Theoretical questions

§ How fast can we train our models?

§ How does it depend on the data distributions?

§ How to encode data dissimilarity?

Our contributions
§ Lower and upper bounds on the optimal sample complexity

§ IPMs can capture the data dissimilarity w.r.t. the optimization objective.

§ Gradient filtering approaches are optimal while communication efficient!
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M. Even, L. Massoulié, K.Scaman Neurips 2022 4/11



Personalized Federated Learning

Distances between distributions (1)

How to encode data dissimilarity in an optimization context?

Definition (Integral Probability Metrics, Muller, 1997)

For H a set of functions from Ξ to Rd and D,D1 two probability distributions on Ξ, let

dHpD,D1q “ sup
hPH

›

›E
“

hpξq ´ hpξ1q
‰›

›

where ξ „ D and ξ1 „ D1. dH is a pseudo-distance on the set of probability measures on Ξ.

Intuition
§ Contains many standard distances for distributions, such as the Wasserstein (or earth
mover’s) distance, total variation, or maximum mean discrepancies.

§ Measures how much a function class can distinguish the two distributions.
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Personalized Federated Learning

Distances between distributions (2)

Application to model training and optimization

§ Most optimization algorithms rely on gradients to perform training.

§ We want to measure how much gradients see the two distributions as different.

§ We can take the function class H as our knowledge on the gradients ∇xℓpx, ξq!

§ For example, for a quadratic models, the gradient is linear.

Assumption (Distribution-based dissimilarities)

Let H be such that, @i “ 1, . . . , N , and x‹
i a minimizer of fi, we have

`

ξ P Ξ ÞÑ ∇xℓpx
‹
i , ξq

˘

P H

Moreover, there exists pbijq1ďi,jďN such that, @pi, jq P J1, NK2, dHpDi,Djq ď bij .
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Personalized Federated Learning

Our results (1)

Lower bound on the sample complexity

§ Let pbijqij fixed non negative weights, ε ą 0 target precision, and i P J1, NK fixed.

§ There exists “difficult” instantiations of our problem based on distributions D1, . . . ,DN

that verify the dissimilarity assumption for weights pbijq, such that any “reasonable
algorithm” that outputs a model xi for user i using Kε samples per agent, must verify:

Kε ě
C

N ε
i pb2q

,

where C is a constant that depends on the variance of local gradients noise and functions
regularity assumptions, and N ε

i pb2q is the number of agents j that verify b2ij ď ε
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Personalized Federated Learning

Our results (2)

The All-for-all algorithm

Let pWijq1ďi,jďN be a n ˆ n matrix with non negative entries and η ą 0. Consider the
iterates generated with xk`1 “ xk ´ ηWgk i.e.,

xk`1
i “ xki ´ η

N
ÿ

j“1

Wij∇xℓpx
k
j , ξ

k
j q

ùñ Optimal collaboration speedup in average amongst clients, provided that η,Wij

tuned with bij from the IPM-based data-dissimilarity assumptions.
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Personalized Federated Learning

Our results (3)

The estimation dHpDi,Djq based on S samples of each local distributions can be done up to
a statistical precision that depends on the complexity of the function space H: 1{

?
S for

finite-dimensional H and some MMDs, 1{S1{d for Wassertein distances, etc.

Case of quadratic linear regression

For a number S of samples pξsi qiPrns,sPrSs, use the following estimates µ̂i, b̂ij and weights

Wij “ λ̂ij in the All-for-all algorithm:

µ̂i “
1

S

S
ÿ

s“1

ξi,s , b̂ij “ }µ̂i ´ µ̂j} , λ̂ij “

1Jb̂2ijďuK
řN

ℓ“1 1Jb̂2iℓďuK

.

ùñ Still optimal collaboration speedup under structural assumptions on the agents.
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Personalized Federated Learning

Take home message

Conclusion
§ Communication to neighboring agents w.r.t. dHpDi,Djq is sufficient, with a
neighorhood radius that decreases with the desired precision ε.

§ Best speedup proportional to the number of neighbors N ε
i pb2q.

§ This speedup can be achieved with limited communication and local storage with the
All-for-all algorithm.

§ In this setup, no asymptotic speedup is possible when all local distributions Di differ
(when ε ă minij dHpDi,Djq, we have N ε

i pb2q “ 1).

For more details

Come at our poster and read our paper!
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Personalized Federated Learning

Thank you for your attention!
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