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How should we evaluate explanations?

•   Explainability methods generally do not correlate with each other

•   Most explanations do not help to predict the model’s outputs and/or failures
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•   Pruthi et al. (2021) proposed a framework for measuring simulability that

disregards trivial protocols 🥰

Evaluating Explanations: How much do explanations from the teacher aid students? Pruthi et. al. 2021. (TACL) 4



Simulability

θ =⋆ argmax E [L (T (x) , S (x) )]θ x∼Dtrain sim θ(training time)

5



Simulability

θ =⋆ argmax E [L (T (x) , S (x) )]θ x∼Dtrain sim θ

teacher student

(training time)

6



Simulability

θ =⋆ argmax E [L (T (x) , S (x) )]θ x∼Dtrain sim θ

teacher student

(training time)

cross entropy

7



Simulability

θ =⋆ argmax E [L (T (x) , S (x) )]θ x∼Dtrain sim θ

teacher student

(training time)

(test time) SIM(T ,S ) =θ E [1{T (x) =x∼Dtest S (x) }]θ

8

cross entropy



Simulability

θ =⋆ argmax E [L (T (x) , S (x) )]θ x∼Dtrain sim θ

teacher student

(training time)

(test time) SIM(T ,S ) =θ E [1{T (x) =x∼Dtest S (x) }]θ

agreement

cross entropy

9



Simulability
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Can we learn explainers  that optimize simulability?ϕ(E)

SIM(T ,S ) <θ
E
⋆ SIM(T ,S )θϕ(E)(scaffolded simulability) (optim. scaffolded simulability)
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•    Only a small subset of attention heads are deemed relevant by SMaT



CIFAR-100

Experiments: head projection
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CIFAR-100

Experiments: head projection
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Conclusions

•   SMaT is a framework that optimizes explanations for teaching students

        -    SMaT leads to high simulability

        -    SMaT learns plausible explanations

 

•   We hope this work motivates the interpretability community to consider

scaffolding as valuable criterion for evaluating and designing new methods

(paper) arxiv.org/abs/2204.10810

(code) github.com/CoderPat/learning-scaffold 
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        ✓  aligns with the goal of communicating the underlying model behavior

        ✓  is easily measurable (both manually and automatically)

        ✓  puts all explainability methods under a single perspective

 

•   Pruthi et al. (2021) proposed a framework for measuring simulability that

        ⭐  disregards trivial protocols

        🧶  requires an optimization procedure
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