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Motivation

Geometries and physics have a lot of identifiable patterns.

Traditional FVM/FEM/FDM based PDE solvers work at the level of computational elements.
They solve PDEs by iteratively conserving fluxes across neighboring elements. This can be
computationally expensive.

Existing supervised/unsupervised ML methods are faster but not accurate or generalizable.
- Black-boxed static inferencing
- Inefficient and inaccurate for high-resolution grids required to capture solution features

Most ML approaches don’t use any ideas from traditional PDE solvers.
Can we learn from PDE solver theory and build a low-dimensional ML approach?



Composable Machine Learning Simulator (CoMLSIm)
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Given a computational domain with user speC|f|ed PDE conditions such as geometry, source terms etc.

CoMLSIm discretizes the domain into subdomains (collection of elements) and represents initial PDE
solutions and conditions with corresponding latent vectors, 13,14, 15 Using pretrained autoencoders.

Concatenated latent vectors are evaluated iteratively with a flux conservation autoencoder. In each iteration
the solution latent vectors are updated while the condition latent vectors are kept constant.

The iteration converges when L., (n’ 5 7715) < le”8
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Solution/Condition autoencoder
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» PDE solutions and input conditions on local subdomains can be represented in a lower-dimensional vector 7.

 Other encoder/decoder networks can be used based on the input data representation: graph encoders, PCA
etc.

« Higher compression reduces time-per-iteration and iteration count, as well as memory usage.

 Field autoencoders for solutions are trained with samples generated from FEM/FDM/FVM solvers for a
given PDE.
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Flux conservation autoencoder
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n,~> number of subdomains in stencil (5 in 2-D and 7 in 3-D) 0, 1,2, 3,4 - local stencil indices

 Flux conservation autoencoder learns local consistency relationships between neighborhood subdomains in
the latent space. This process is very similar to flux conservation in traditional PDE.

« Solution and condition latent vectors on neighboring subdomains are concatenated together and used as input
to the flux conservation autoencoder.

« Since flux conservation autoencoder is trained on encodings of actual locally consistent PDE
solutions/conditions it always converges to locally consistent solutions during inference. The uniqueness of
solution is determined by the fixed condition latent vectors.
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Key takeaways from CoMLSIm approach

1) Local learning enables accurate and generalizable learning on highly-resolved grids.

- Higher accuracy over ML baselines v/
- Extending to bigger physical domains with larger resolutions.
- Better generalization to out-of-distribution conditions such as geometries, source terms etc.

Comparison with baselines

Experiment Metric || CoMLSim | UNet FNO DeepONet | FCNN
2-D Linear Poisson’s Ly 0.011 0.132 0.031 0.061 0.267
2-D non linear Poisson’s L4 0.0053 0.0877 | 0.0278 | 0.527 0.172
3-D NS external flow Ly 0.012 0.0625 | 0.038 0.81 0.125
3-D chip cooling L. 15.2 95.21 60.836 | 45.27 192.7

All experiments are carried out on highly-resolved grids with limited training samples. The errors are averaged over a large
number of unseen testing samples. CoMLSim outperforms all the ML baselines.

Y \NnSyYS




Key takeaways from CoMLSIm approach
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- Higher accuracy over ML baselines v*
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Key takeaways from CoMLSIm approach

1) Local learning enables accurate and generalizable learning on highly-resolved grids.

- Higher accuracy over ML baselines v/

- Extending to bigger physical domains with larger resolutions v
- Better generalization to out-of-distribution conditions such as geometries, source terms etc. v/
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Key takeaways from CoMLSIm approach

2) Latent space computations provide computational speed-ups during inference v/
- Latent space is a lower-dimensional representation of the physical computational space.

Solution/Condition Encoding size vs accuracy and number of convergence iterations

Compression ratio Mean Absolute Error Avg. Iterations
512 0.047 75

256 0.017 150

128 0.029 250

64 0.1 600

32 0.21 700

16 0.29 800

Smaller latent sizes result in faster convergence and have a smaller per iteration cost. As the latent size
increases the autoencoders overfit and negatively impacts the accuracy and convergence iterations.
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Key takeaways from CoMLSIm approach

3) Iterative solution algorithm at inference:

- Self-supervised learning algorithm: Just need to learn solution representations through field and flux
autoencoders. v’

- Stable and robust convergence at inference
- Ease of coupling with traditional (Ansys) solvers
- Better explanability: solution evolution during iteration aligns with nature of the PDE solved
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3) Iterative solution algorithm at inference:

- Self-supervised learning algorithm: Just need to learn solution representations through field and flux
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Key takeaways from CoMLSIm approach

3) Iterative solution algorithm at inference:

- Self-supervised learning algorithm: Just need to learn solution representations through field and flux
autoencoders. v/

- Stable and robust convergence at inference v
- Ease of coupling with traditional (Ansys) solvers v/
- Better explanability: solution evolution during iteration aligns with nature of the PDE solved v
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Contour plots show the CoMLSim prediction vs Ansys solver ground truth solution at different iterations. The solution evolution is
analogous to the PDE (Poisson’s equation) representing this problem. Initially, solution magnitude builds around source peaks,
which diffuse through the domain as iterations progress.

\nsys

13 ©2022 ANSYS, Inc.



Key takeaways from CoMLSIm approach

4) Based on key ideas from traditional PDE solvers.

- Discretization,
- linear/non-linear solvers,

- evaluation/convergence metrics etc.

5) Can be trained accurately with limited training data (~300).

6) Converges 50-100x faster than traditional PDE solvers on a single CPU.

7) Can be parallelized to multi-CPU and GPU architectures.

Simulation time (in seconds) comparison with Ansys Fluent

Experiment Num. of Ele- | CoMLSim Ansys Fluent
ments

Laplace 65K 0.21 10

Linear Poissons 1048K 2.75 130

Coupled non linear Poissons | 1048K 2.81 540

3D Navier-Stokes flow 1245K 35 1900

3D Electronic Chip Cooling | 2097K 42 1600
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CoMLSIm Summary

Data efficient learning on high-resolution grids (~300 samples)
- Most other baselines require a lot more data.

Scaling to large physical domains
- Can be parallelized to more CPUs and GPUs

Better generalization to out-of-distribution settings
- 3D complex geometric shapes
- High dimensional source terms

Scales to any grid resolution
- Can be trained and evaluated on very fine resolutions

Iterative inferencing enables coupling with traditional PDE solvers
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Future work

 Extension to transient PDEs.
« Handling unstructured/multi-resolution representations within subdomains.
 Further speedup of iterative inference with better algorithms and parallel processing.






