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Great Empirical Success of Deep Models



Contrastive Learning (CL)
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Contrastive Loss

Multi-layer network 𝜽
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Formulation of Contrastive Learning

Positive pairs:
Minimize distance 𝑑!

Negative pairs:
Maximize distance 𝑑!"
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'/2

Inter-view distance 𝑑&)' = 𝒇 𝑖 − 𝒇 𝑗 '
'/2

InfoNCE loss:

ℒ*+, ≔ −𝜏7
&-.

/

log
exp(−𝑑&'/𝜏)

𝜖 exp −𝑑&'/𝜏 + ∑)0& exp(−𝑑&)' /𝜏)
Sample 𝑖

Sample 𝑗



A family of contrastive losses

General Loss function we consider (𝜙,𝜓 are monotonous increasing functions)

Intra-view distance 𝑑$% = 𝒇 𝑖 − 𝒇 𝑖& %
%/2
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A general family



Example: InfoNCE

𝜙 𝑥 = 𝜏 log(𝜖 + 𝑥)

= 𝜏/
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𝜓 𝑥 = exp 𝑥/𝜏

ℒKLM ≔ −𝜏/
DEF

G

log
exp(−𝑑DJ/𝜏)

𝜖 exp −𝑑DJ/𝜏 + ∑HID exp(−𝑑DHJ /𝜏)



Coordinate-wise Optimization

Max-player 𝜽
Learns the representation to maximize contrastiveness.

Min-player 𝜶
Emphasize distinct sample pairs that share similar representation (hard negative pairs)

Claim: if 𝜓 𝑥 = 𝑒N/O, minimizing ℒA,B ó Coordinate-wise optimization: 

𝛼! ≔ argmin
"∈𝒜

ℰ" 𝜽! −ℛ 𝛼

𝜽!%& ≔ 𝜽! + 𝜂∇𝜽ℰ"! 𝜽!



Different Losses, Same Energy Function

Different loss functions 𝜙,𝜓 corresponds to the same energy function 𝓔
How the min player 𝜶 operates are different.



How min player 𝛼 is determined?

where the feasible set

If 𝜓 𝑥 = 𝑒N/O, then we have 𝛼(𝜽) ≔ argmin
P∈𝒜

ℰP 𝜽 − ℛ 𝛼

and entropy regularization term  ℛ 𝛼 ≔ 2𝜏∑$()* 𝐻(𝛼$⋅) 𝜉& ≔7
)0&

𝜓(𝑑&' − 𝑑&)' )

𝒜 ≔ 𝛼: ∀𝑖,7
)0&

𝛼&) = 𝜏1.𝜉&𝜙( 𝜉& , 𝛼&) ≥ 0

For infoNCE with 𝜖 = 0, solving the optimization problem yields:

𝛼$'(𝜽) =
exp −𝑑$'% /𝜏

∑',$ exp −𝑑$'% /𝜏
We put more weights on small 𝒅𝒊𝒋, i.e., distinct samples with similar representations



Coordinate-wise Optimization

Minimizing ℒA,B ó Coordinate-wise optimization: 

𝛼! ≔ argmin
"∈𝒜

ℰ" 𝜽! −ℛ 𝛼

𝜽!%& ≔ 𝜽! + 𝜂∇𝜽ℰ"! 𝜽!



Coordinate-wise Optimization

Minimizing ℒA,B ó Coordinate-wise optimization: 

𝛼! ≔ argmin
"∈𝒜

ℰ" 𝜽! −ℛ 𝛼

𝜽!%& ≔ 𝜽! + 𝜂∇𝜽ℰ"! 𝜽!



Proposed: Pair-weighed CL (𝜶-CL)

𝛼! = sg(𝛼 𝜽! )
Pairwise importance

The min player 𝛼 can be optimized by a loss function, or directly
specified:

𝜽!%& ≔ 𝜽! + 𝜂∇𝜽ℰ"! 𝜽!



Experimental Results



Experimental Results

Backbone = ResNet50

More datasets



Roadmap of 𝛼-CL

𝛼-CL
ℰ" 𝜽 ≔ tr ℂ"[𝒇𝜽 𝒙 ]

min
𝜽
ℒ/,1(𝜽)

Minimization of various CL losses

Applications

Finding the best 𝛼 = 𝛼(𝜽) for performance gain

Receptive-field specific 𝛼

More applications (e.g., CL in GNN)

Dynamics of 𝜽 with fixed 𝛼
in the linear setting

Hierarchical representation learning

Understanding

Dynamics of 𝜽 in the nonlinear setting
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Deep linear case with fixed 𝛼

If 𝒇𝜽(𝒙) = 𝑊 𝜽 𝒙, then Contrastive Learning reduces to PCA objective



Deep linear case with fixed 𝛼

If 𝒇𝜽(𝒙) = 𝑊[𝑊[\F…𝑊F𝑥, then almost all local optima are 
global and it is PCA

1. Nearby weights align
2. All 𝑊6 has rank-1 structure 



Dimensional Collapsing in CL
Shouldn’t contrastive SSL make full use of all dimensions? The answer is No…

DirectCLR [L. Jing, P. Vincent, Y. LeCun, Y. Tian, Understanding Dimensional Collapse in Contrastive Self-supervised Learning, ICLR’22]

If things are aligned, why not let them align directly?

𝑊! 𝑊"x z

𝑊! and 𝑊" will align with each other
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Thanks!
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