Understanding Deep Contrastive Learning via Coordinate-wise Optimization

Yuandong Tian

facebook Artificial Intelligence

**** **** **

Research Scientist and Senior Manager

Meta AI (FAIR)

[Published in NeurIPS'22]

Great Empirical Success of Deep Models

Contrastive Learning (CL)

Formulation of Contrastive Learning

A family of contrastive losses

General Loss function we consider (ϕ , ψ are monotonous increasing functions)

$$\min_{\boldsymbol{\theta}} \mathcal{L}_{\phi,\psi}(\boldsymbol{\theta}) \coloneqq \sum_{i=1}^{N} \phi\left(\sum_{j\neq i} \psi(\boldsymbol{d}_{i}^{2} - \boldsymbol{d}_{ij}^{2})\right)$$

Intra-view distance $d_i^2 = \|\boldsymbol{f}[i] - \boldsymbol{f}[i']\|_2^2/2$ Inter-view distance $d_{ij}^2 = \|\boldsymbol{f}[i] - \boldsymbol{f}[j]\|_2^2/2$

A general family

Contrastive Loss	$ \phi(x) $	$\psi(x)$
InfoNCE (Oord et al., 2018)	$\tau \log(\epsilon + x)$	$e^{x/ au}$
MINE (Belghazi et al., 2018)	$\log(x)$	e^x
Triplet (Schroff et al., 2015)	x	$[x+\epsilon]_+$
Soft Triplet (Tian et al., 2020c)	$\tau \log(1+x)$	$e^{x/ au+\epsilon}$
N+1 Tuplet (Sohn, 2016)	$\log(1+x)$	e^x
Lifted Structured (Oh Song et al., 2016)	$[\log(x)]_{+}^{2}$	$e^{x+\epsilon}$
(Coria et al., 2020)	x	$ \operatorname{sigmoid}(cx) $
(Ji et al., 2021)	linear	linear

Example: InfoNCE

$$\mathcal{L}_{nce} \coloneqq -\tau \sum_{i=1}^{N} \log \frac{\exp(-d_i^2/\tau)}{\epsilon \exp(-d_i^2/\tau) + \sum_{j \neq i} \exp(-d_{ij}^2/\tau)}$$

$$= \tau \sum_{i=1}^{N} \log \left(\epsilon + \sum_{j \neq i} \exp \left(\frac{d_i^2 - d_{ij}^2}{\tau} \right) \right)$$

 $\phi(x) = \tau \log(\epsilon + x)$ $\psi(x) = \exp(x/\tau)$

Coordinate-wise Optimization

Claim: if $\psi(x) = e^{x/\tau}$, minimizing $\mathcal{L}_{\phi,\psi} \Leftrightarrow$ Coordinate-wise optimization:

$$\alpha_t \coloneqq \arg\min_{\alpha \in \mathcal{A}} \mathcal{E}_{\alpha}(\boldsymbol{\theta}_t) - \mathcal{R}(\alpha)$$
$$\boldsymbol{\theta}_{t+1} \coloneqq \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \mathcal{E}_{\alpha_t}(\boldsymbol{\theta}_t)$$

Max-player θ

Learns the representation to maximize contrastiveness.

Min-player α

Emphasize distinct sample pairs that share similar representation (hard negative pairs)

Different Losses, Same Energy Function

Contrastive Loss	$\phi(x)$	$\psi(x)$
InfoNCE (Oord et al., 2018)	$\tau \log(\epsilon + x)$	$e^{x/ au}$
MINE (Belghazi et al., 2018)	$\log(x)$	e^x
Triplet (Schroff et al., 2015)	x	$[x+\epsilon]_+$
Soft Triplet (Tian et al., 2020c)	$\tau \log(1+x)$	$e^{x/\tau+\epsilon}$
N+1 Tuplet (Sohn, 2016)	$\log(1+x)$	e^x
Lifted Structured (Oh Song et al., 2016)	$[\log(x)]_{+}^{2}$	$e^{x+\epsilon}$
(Coria et al., 2020)	x	$\operatorname{sigmoid}(cx)$
(Ji et al., 2021)	linear	linear

Different loss functions (ϕ, ψ) corresponds to the same energy function \mathcal{E} How the min player α operates are different.

How min player α is determined?

If
$$\psi(x) = e^{x/\tau}$$
, then we have $\alpha(\theta) \coloneqq \arg\min_{\alpha \in \mathcal{A}} \mathcal{E}_{\alpha}(\theta) - \mathcal{R}(\alpha)$

where the feasible set
$$\mathcal{A} \coloneqq \left\{ \alpha \colon \forall i, \sum_{j \neq i} \alpha_{ij} = \tau^{-1} \xi_i \phi'(\xi_i), \alpha_{ij} \ge 0 \right\}$$

and entropy regularization term
$$\mathcal{R}(\alpha) \coloneqq 2\tau \sum_{i=1}^{N} H(\alpha_{i})$$
 $\xi_{i} \coloneqq \sum_{j \neq i} \psi(d_{i}^{2} - d_{ij}^{2})$

For infoNCE with $\epsilon = 0$, solving the optimization problem yields:

$$\alpha_{ij}(\boldsymbol{\theta}) = \frac{\exp(-d_{ij}^2/\tau)}{\sum_{j \neq i} \exp(-d_{ij}^2/\tau)}$$

We put more weights on small d_{ij} , i.e., distinct samples with similar representations

Coordinate-wise Optimization

Minimizing $\mathcal{L}_{\phi,\psi} \Leftrightarrow$ Coordinate-wise optimization:

$$\alpha_t \coloneqq \arg\min_{\alpha \in \mathcal{A}} \mathcal{E}_{\alpha}(\boldsymbol{\theta}_t) - \mathcal{R}(\alpha)$$

$$\boldsymbol{\theta}_{t+1} \coloneqq \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \mathcal{E}_{\alpha_t}(\boldsymbol{\theta}_t)$$

Coordinate-wise Optimization

Minimizing $\mathcal{L}_{\phi,\psi} \Leftrightarrow$ Coordinate-wise optimization:

$$\boldsymbol{\theta}_{t+1} \coloneqq \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \mathcal{E}_{\alpha_t}(\boldsymbol{\theta}_t)$$

Proposed: Pair-weighed CL (α -CL)

The min player α can be optimized by a loss function, or **directly** specified:

Pairwise importance $\alpha_t = \operatorname{sg}(\alpha(\theta_t))$ $\theta_{t+1} \coloneqq \theta_t + \eta \nabla_{\theta} \mathcal{E}_{\alpha_t}(\theta_t)$

Experimental Results

	CIFAR-10		STL-10			
	100 epochs	300 epochs	500 epochs	100 epochs	300 epochs	500 epochs
$\mathcal{L}_{quadratic}$	63.59 ± 2.53	73.02 ± 0.80	73.58 ± 0.82	55.59 ± 4.00	64.97 ± 1.45	67.28 ± 1.21
\mathcal{L}_{nce}	84.06 ± 0.30	87.63 ± 0.13	87.86 ± 0.12	78.46 ± 0.24	82.49 ± 0.26	83.70 ± 0.12
backprop $\alpha(\boldsymbol{\theta})$	83.42 ± 0.25	87.18 ± 0.19	87.48 ± 0.21	77.88 ± 0.17	81.86 ± 0.30	83.19 ± 0.16
α -CL- r_H	84.27 ± 0.24	87.75 ± 0.25	87.92 ± 0.24	78.53 ± 0.35	82.62 ± 0.15	83.74 ± 0.18
α -CL- r_{γ}	83.72 ± 0.19	87.51 ± 0.11	87.69 ± 0.09	78.22 ± 0.28	82.19 ± 0.52	83.47 ± 0.34
α -CL- r_s	84.72 ± 0.10	86.62 ± 0.17	86.74 ± 0.15	76.95 ± 1.06	80.64 ± 0.77	81.65 ± 0.59
α -CL-direct	85.09 ± 0.13	88.00 ± 0.12	88.16 ± 0.12	$\textbf{79.38} \pm \textbf{0.16}$	82.99 ± 0.15	84.06 ± 0.24

- (α -CL- r_H) Entropy regularizer $r_H(\alpha_{ij}) = -2\tau \alpha_{ij} \log \alpha_{ij}$;
- $(\alpha$ -CL- $r_{\gamma})$ Inverse regularizers $r_{\gamma}(\alpha_{ij}) = \frac{2\tau}{1-\gamma} \alpha_{ij}^{1-\gamma}$ $(\gamma > 1).$
- (α -CL- r_s) Square regularizer $r_s(\alpha_{ij}) = -\frac{\tau}{2}\alpha_{ij}^2$.

• (α -CL-direct) Directly setting α : $\alpha_{ij} = \exp(-d_{ij}^p/\tau)$ (p > 1).

Experimental Results

More datasets

	CIFAR-100		
	100 epochs	300 epochs	500 epochs
\mathcal{L}_{nce}	55.696 ± 0.368	59.706 ± 0.360	59.892 ± 0.340
α -CL-direct	$\overline{\textbf{57.144} \pm 0.150}$	$\textbf{60.110} \pm \textbf{0.187}$	$\textbf{60.330} \pm \textbf{0.194}$

Backbone = ResNet50

Dataset	Method	100 epochs	300 epochs	500 epochs
CIEN P 10	\mathcal{L}_{nce}	86.388 ± 0.157	89.974 ± 0.138	90.194 ± 0.232
CIFAR-10	α -CL-direct	87.406 ± 0.227	90.228 ± 0.185	90.366 ± 0.209
CIFAR-100	\mathcal{L}_{nce}	60.162 ± 0.482	65.400 ± 0.310	65.532 ± 0.297
	α -CL-direct	62.650 ± 0.181	65.630 ± 0.263	65.636 ± 0.269
STL-10	\mathcal{L}_{nce}	81.635 ± 0.244	86.570 ± 0.174	87.900 ± 0.222
	α -CL-direct	82.850 ± 0.171	86.870 ± 0.178	87.653 ± 0.175

Deep linear case with fixed α

If $f_{\theta}(x) = W(\theta)x$, then Contrastive Learning reduces to PCA objective

Corollary 2 (Representation learning in Deep Linear CL reparameterizes Principal Component Analysis (PCA)). When $z = W(\theta)x$ with a constraint $WW^{\top} = I$, \mathcal{E}_{α} is the objective of Principal Component Analysis (PCA) with reparameterization $W = W(\theta)$:

$$\max_{\boldsymbol{\theta}} \mathcal{E}_{\alpha}(\boldsymbol{\theta}) = \operatorname{tr}(W(\boldsymbol{\theta})X_{\alpha}W^{\top}(\boldsymbol{\theta})) \quad \text{s.t. } WW^{\top} = I$$
(9)

here $X_{\alpha} := \mathbb{C}_{\alpha}[\mathbf{x}]$ is the contrastive covariance of input \mathbf{x} .

Deep linear case with fixed α

If $f_{\theta}(x) = W_L W_{L-1} \dots W_1 x$, then almost all local optima are global and it is PCA

Theorem 3 (Representation Learning with DeepLin is PCA). If $\lambda_{\max}(X_{\alpha}) > 0$, then for any local maximum $\theta \in \Theta$ of Eqn. 11 whose $W_{>1}^{\top}W_{>1}$ has distinct maximal eigenvalue:

- there exists a set of unit vectors $\{v_l\}_{l=0}^L$ so that $W_l = v_l v_{l-1}^\top$ for $1 \le l \le L$, in particular, v_0 is the unit eigenvector corresponding to $\lambda_{\max}(X_{\alpha})$, 1. Nearby weights align
- θ is global optimal with objective $\mathcal{E}^* = \lambda_{\max}(X_{\alpha})$. 2. All W_l has rank-1 structure

Corollary 3. If we additionally use per-filter normalization (i.e., $\|\boldsymbol{w}_{lk}\|_2 = 1/\sqrt{n_l}$), then Thm. 3 holds and \boldsymbol{v}_l is more constrained: $[\boldsymbol{v}_l]_k = \pm 1/\sqrt{n_l}$ for $1 \le l \le L-1$.

Dimensional Collapsing in CL

Shouldn't contrastive SSL make full use of all dimensions? The answer is **No...**

 W_1 and W_2 will align with each other

If things are aligned, why not let them align directly?

Loss function	Projector	Top-1 Accuracy
SimCLR	2-layer nonlinear projector	66.5
SimCLR	1-layer linear projector	61.1
SimCLR	no projector	51.5
DirectCLR	no projector	62.7

DirectCLR [L. Jing, P. Vincent, Y. LeCun, Y. Tian, Understanding Dimensional Collapse in Contrastive Self-supervised Learning, ICLR'22]

