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Our goal: unsupervised unit discovery

We want to learn to representations that allow us to segment and cluster speech data in
order to discover information bearing units (eg. phonemes, syllables, words, etc.)

Motivations:
e Discrete units enable text-less NLP
e Reduced sampling rates and therefore reduced computational costs
e How can discrete units emerge from continuous perceptual data? It might provide
hints on language acquisition.
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Do our representation learners account for it?

Hierarchy? Only partially. Layers in deep neural nets learn an internal hierarchy of
concepts, but the training criteria are only applied at the top level (layer).

Information density? Not really. Models usually process data at fixed input-driven
rates (eg. pixels in images, frames in speech).

So we work on representation learners which:

1. At each level extract features at different non-uniform information
dependent rates.
2. At each level apply a training criterion.
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Low-level representations evaluation

e We evaluate the downstream performance of low-level representations in the tasks of
frame-wise linear phone classification and CTC phone transcription in the test split of
LibriSpeech train-clean-100, and the ABX task in the ZeroSpeech 20271 dev-clean set.

e Overall our method improves phone discriminability when compared against multiple
CPC-based hierarchical and non-hierarchical baselines, including a hierarchical model that
uses supervised phone boundaries for downsampling

Architecture  Model A T VHOIE T ABX i e L
accuracy accuracy within across
Si CPC [Riviere et al., 2020] 67.50 83.20 6.68 8.39
ingle level :
ACPC [Chorowski et al., 2021] 68.60 83.33 iy e 7 7.09
Two-level CPC no downsampling 67.49 83.38 6.66 8.34
SCPC [Bhati et al., 2021] 43.79 68.38 20.18 16.26
Multi-level ~ Two-level CPC w. downsampling 67.92 83.39 6.66 8.32
mACPC [Cuervo et al., 2022] 7025 83.35 5.13 6.84
Ours 72.57 83.95 5.08 6.72

Downsampling (supervised) 101 84.70 5.07 6.68




High-level representations evaluation

e We evaluate the downstream performance of high-level representations in the tasks
of phone transcription in the test split of LibriSpeech train-clean-100. We additionally
report the average sampling rate of the representations to evaluate compression.

e Our model gives the best results in phone accuracy and has the lowest average
sampling rate among unsupervised methods with variable downsampling.

Avg. sampling

Downsampling Model J  Phone accuracy 7

rate (Hz)
None Two-level CPC no downsampling 100 83.41
Constant Two-level CPC with downsampling 10.94 67.75
SCPC [Bhati et al., 2021] 1591 55.49
ariils mACPC [Cuervo et al., 2022] 14.47 69.66
Ours 12.32 78.93

Downsampling (supervised) 10.87 85.74




Phone segmentation evaluation

Results on the test split of LibriSpeech train clean 100 and TIMIT test split. Our model
produces segmentations competitive with the state-of-the-art, while being robust to
non-speech events.

Dataset Architecture Model Precision Recall F1 R-val
Single level  [Kreuk et al., 2020] 61.12 8253 7023 ©61.87

Lllb“SIPSSCh mACPC [Cuervo etal, 2022]  59.15 8317 69.13 5771
Gleal Multi-level ~ SCPC [Bhati et al., 2021] 64.05 83.11 7235 66.40
Ours 79.94 7792 7891 81.98

T Single level  [Kreuk et al., 2020] 8480  85.77 8527 8735
(non-speech mMACPC [Cuervo et al., 2022] 84.63 84.79 84.70 86.86
removed) Multi-level ~ SCPC [Bhati et al., 2021] 85.31 8536 85.31 87.38
Ours 80.08 81.40 80.73 83.50




Conclusions & Where do we go from here?

Important takeaways:

e We have shown that accounting for the structure of the signal (hierarchy and
spatial distribution of information) improves disentanglement of frame-level
representations.

e Our objective function incorporating soft constraints of discreteness and average
unit-duration leads to the unsupervised discovery of unit-boundaries that coincide
with a human-made phonetic segmentation.

Interesting future research directions:

e Further analyze the effect of top-down feedback on the representations.
e Explore other high-level tasks to improve the quality of high-level representations.
e (oing beyond phonetic: discovering higher-level units.
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Code: https://github.com/chorowski-lab/hCPC



https://openreview.net/pdf?id=Jk8RVjnHlsE
https://github.com/chorowski-lab/CPC_audio

