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Meta-Learning: Learning a Predictor for Fast Adaptation
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Quantify Provable Uncertainty via PAC Prediction Sets

A PAC prediction set (Wilks, 1941; Vovk, 2013; Park et al., 2020) is a prediction set that
comes with the probably approximately correct (PAC) guarantee (Valiant, 1984).
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Quantify Provable Uncertainty via PAC Prediction Sets

A PAC prediction set (Wilks, 1941; Vovk, 2013; Park et al., 2020) is a prediction set that
comes with the probably approximately correct (PAC) guarantee (Valiant, 1984).

A prediction set is a set-valued predictor

Fτ (x) = {y ∈ Y | f(x, y) ≥ τ} ,

where a conformity score function f : X × Y → R≥0 and a parameter τ ∈ R≥0 are given.
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Quantify Provable Uncertainty via PAC Prediction Sets

A PAC prediction set (Wilks, 1941; Vovk, 2013; Park et al., 2020) is a prediction set that
comes with the probably approximately correct (PAC) guarantee (Valiant, 1984).

A parameter τ ∈ R≥0 is ε-correct if

Pθ
{
Y ∈ Fτ (X)

}
≥ 1− ε,

where the probability is taken over (X,Y ) ∼ pθ.

We denote a set of all ε-correct taus by Tε(θ).
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Quantify Provable Uncertainty via PAC Prediction Sets

A PAC prediction set (Wilks, 1941; Vovk, 2013; Park et al., 2020) is a prediction set that
comes with the probably approximately correct (PAC) guarantee (Valiant, 1984).

An estimator γ̂ε,δ : (X × Y)∗ → R≥0 is (ε, δ)-probably approximately correct (PAC) if

P
{
γ̂ε,δ(S) ∈ Tε(θ)

}
≥ 1− δ,

where the probability is taken over a calibration set S ∈ (X × Y)∗.
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Meta-Calibration: Learning PAC Prediction Sets for Fast Adaptation
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Three sources of randomness in the (1) meta calibration, (2) adaptation, and (3) evaluation.
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Problem: PAC Prediction Sets for Meta-Learning

We control the three sources of randomness via three parameters δ, α, and ε.

An estimator τ̂ : S ×A→ R≥0 is (ε, α, δ)-meta PAC (mPAC) if where the first
probability is taken over (S,A) and the second probability is taken over (θ,A).
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Algorithm (Simplified)
The proposed algorithm Meta-PS internally uses any PAC prediction set algorithm γ̂ε,δ
(e.g., Park et al. (2020)).

0 R

τ1 τ2 τ3 τ4

τ1 = γ̂ε,α/2((S1, A1))τ2 = γ̂ε,α/2((S2, A2))τ3 = γ̂ε,α/2((S3, A3))τ4 = γ̂ε,α/2((S4, A4))

τ

τ = γ̂α/2,δ((τ1, 1), (τ2, 1), (τ3, 1), (τ4, 1))

Meta-PS(S,A, ε, α, δ)

Theorem (Meta PAC Guarantee)

The estimator τ̂ε,α,δ implemented by Meta-PS is (ε, α, δ)-mPAC.
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Results: Mini-ImageNet
We empirically demonstrated the correctness guarantee of our algorithm Meta-PS.

probably
ε-correct

small

Figure: ε = 0.1, α = 0.1, δ = 10−5 for Meta-PS and ε = 0.1, δ = 10−5 for the other methods.
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Conclusion

We proposed a PAC prediction set algorithm for meta learning.

Controls three sources of uncertainty for our correctness guarantee.

Evaluated over three application domains: image, language, and medical datasets.

Code is available: https://github.com/sangdon/meta-pac-ps
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