
MIT (Oral Designated Paper)

Given a dataset X ⊂ Rd of n points, the n × n distance matrix
A records the pairwise distances, under a distance function f .

Distance Matrices Applications of our Results

Matrix vector products imply faster algorithms for many down-
stream applications including:

1)Iterative Methods 2) Matrix Multiplication 3) Low-rank Approxi-
mation 4) Eigenvector Approximation 5) Linear Systems Solving

Sample of Applications for the `1 Function

Experiments

Faster Linear Algebra for Distance Matrices
Piotr Indyk, Sandeep Silwal

We study the cases where f = `1, `2, `∞ as well as f = `pp and
other functions.

f (xi, xj)

xi

xj

Ai,j = f (xi, xj)A=

Distance matrices are ubiquitous in ML but require Ω(n2) time
and space to use.

Goal: Scalable and efficient algorithms for distance matrices.

Three Gems of the Paper

Theorem 1: For any input vector y, we can compute Ay
exactly in O(nd) time after O(nd log n) preprocessing.

Consider the `1 case: Ai,j = ‖xi − xj‖1.

Not all distance functions admit fast matrix vector products.
Consider the case Ai,j = ‖xi − xj‖∞.

Theorem 2: For any α > 0 and d = ω(log n), any algorithm
for exactly computing Az for any input z, where A is the `∞
distance matrix, requires Ω(n2−α) time (assuming the Strong
Exponential Time Hypothesis).

We can also initialize (approximate) distance matrices in time
faster than previously known results.

Theorem 3: For any ε ∈ (0, 1), we can calculate B such that
each entry of B satisfies (1−ε)‖xi−xj‖2 ≤ Bij ≤ (1+ε)‖xi−
xj‖2 in time O(ε−2n2 log2(ε−1 log n)).

This result requires tools beyond dimensionality reduction as the
Jonhson Lindenstrauss Lemma is tight!

See paper for additional theoretical results and full proofs!

For the `2 case, the standard way to create an approximate dis-
tance matrix is to use dimensionality reduction onto O(log n) di-
mensions (Johnson Lindenstrauss Lemma) and compute the dis-
tance matrix in the projected space, which takes time O(n2 log n).

ω ≈ 2.37 denotes the matrix multiplication constant.

See full paper for further applications for other functions.

We perform empirical evaluations for our `1 matrix vector product
upper bound. Similar results apply for upper bound results for
other functions.

As matrix-vector queries are the dominating subroutine in many
key practical linear algebra algorithms such as the power method
for eigenvalue estimation or iterative methods for linear regres-
sion, a fast matrix-vector query runtime automatically translates
to faster algorithms for downstream applications.

(n, d) denotes the number of points and dimension of the dataset,
respectively. Query times are averaged over 10 trials with Gaus-
sian vectors as queries.

We observe > 3 orders of magnitude speedup over naive
methods!

See paper for full details.


