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Learning from Label Proportions (LLP)
● Feature-vector space 𝒳  =   ℝd ,  f : 𝒳→ {0,1}. 

● Define label proportion σ(B,f) ≔ Avg{f(x) : x ∈ B}   for bag B ⊆ 𝒳

● Training examples (B, σ(B,f)), goal is to train h consistent with f.

● h : 𝒳→ {0,1} satisfies B if σ(B,h) = σ(B,f)
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● Training examples (B, σ(B,f)), goal is to train h consistent with f.

● h : 𝒳→ {0,1} satisfies B if σ(B,h) = σ(B,f)

Goal: Given (Bk, σ(Bk,f)) sampled from some distribution,  (k=1,...,m) find hypothesis 
h : 𝒳 →{0,1} maximizing # satisfied bags Bk.

Our focus: When the target concept f is a linear threshold function (LTF) or halfspace.

● f  =  pos(〈r, x〉+ c) where pos(a) = 1 if a > 0, 0 otherwise.



Previous Work
[Saket, NeurIPS’21]: Given ({(Bk , σ(Bk,f))} : k = 1,...,m) s.t. |Bk| ≤ 2, f is unknown LTF:

● Efficient algorithm that finds an LTF satisfying ⅖ fraction of all the bags.
● NP-hard to find any fn. of constantly many LTFs satisfying (½ + δ)-frac. of the bags.
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Is there algorithm satisfying 𝛀(1)-fraction of bags of size > 2 ?
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Given ({(Bk , σ(Bk,f))} : k = 1,...,m) s.t. |Bk| ≤ q, f is unknown LTF:

Algorithms: 

● If q = 3, an efficient algorithm to satisfy at least (1/12)-fraction of the bags.
● For q > 3, an efficient algorithm to weakly-satisfy 𝛀(1/q)-fraction of bags.

Hardness: NP-hard to find any function of constantly many LTFs that

● satisfies (1/q + δ)-fraction of bags for any constant q ∈ ℤ+,
● satisfies (4/9 + δ)-fraction of bags for q = 2.

for any constant δ > 0.
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With r*(r*)
T as a soln. write the feasible SDP for symmetric psd R:

(x1)
TR x2 ≤  0 for all non-mon. bags B  &    (xi)

TR xi > 0 for all xi.

Factor  R = LTL. Rounding based on sign of〈Lxi, g〉 for random gaussian vector g. 

Problem: For q = 3 : the sign of 〈r*, x1 〉〈r*, x2〉not determined by the label proportion for 
non-monochromatic bags.
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 (x1)
TR{1,2} x2 ≤ 0 ,   (x1)

TR{1,3} x3 ≤ 0  ,  (x1)
T(R{1,2} + R{1,3})x1 ≥ (x1)

TRx1 ,  R ≽ R{1,j} for j=2,3

∀ non-monochromatic bags B = {x1, x2, x3}.

Rounding: WLOG (x1)
TR{1,2}x1 ≥ (x1)

TRx1 / 2. Factor  R = LTL.

Can we show that ∠ Lx1, Lx2 is at least some constant 𝛉0 > 0 ?
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Future Work: Algorithm for satisfying bags of size > 3. 

LLP-learning other classifiers, deviation-based objectives.   


