Algorithms and Hardness for Learning Linear Thresholds from Label Proportions

Rishi Saket

Google Research India
Bangalore, India

NeurIPS 2022

Learning from Label Proportions (LLP)

- Feature-vector space $\mathscr{X}=$ 風d $^{d}, f: \mathscr{X} \rightarrow\{0,1\}$.
- Define label proportion $\sigma(\mathrm{B}, \mathrm{f}):=\operatorname{Avg}\{\mathrm{f}(\mathbf{x}): \mathbf{x} \in \mathrm{B}\}$ for bag $\mathrm{B} \subseteq \mathscr{X}$
- Training examples $(B, \sigma(B, f))$, goal is to train h consistent with f.
- $\quad h: \mathscr{X} \rightarrow\{0,1\}$ satisfies B if $\sigma(B, h)=\sigma(B, f)$

Learning from Label Proportions (LLP)

- Feature-vector space $\mathscr{X}=\operatorname{Ra}^{d}, f: \mathscr{X} \rightarrow\{0,1\}$.
- Define label proportion $\sigma(B, f):=\operatorname{Avg}\{f(\mathbf{x}): \mathbf{x} \in B\}$ for bag $B \subseteq \mathscr{X}$
- Training examples $(B, \sigma(B, f))$, goal is to train h consistent with f.
- $h: \mathscr{X} \rightarrow\{0,1\}$ satisfies B if $\sigma(B, h)=\sigma(B, f)$

Goal: Given $\left(B_{k}, \sigma\left(B_{k}, f\right)\right)$ sampled from some distribution, $(k=1, \ldots, m)$ find hypothesis $\mathrm{h}: \mathscr{X} \rightarrow\{0,1\}$ maximizing \# satisfied bags B_{k}.

Learning from Label Proportions (LLP)

- Feature-vector space $\mathscr{X}=$ 凮d $^{d}, f: \mathscr{X} \rightarrow\{0,1\}$.
- Define label proportion $\sigma(B, f):=\operatorname{Avg}\{f(\mathbf{x}): \mathbf{x} \in \mathrm{B}\}$ for bag $B \subseteq \mathscr{X}$
- Training examples $(B, \sigma(B, f))$, goal is to train h consistent with f.
- $\mathrm{h}: \mathscr{X} \rightarrow\{0,1\}$ satisfies B if $\sigma(B, h)=\sigma(B, f)$

Goal: Given $\left(B_{k}, \sigma\left(B_{k}, f\right)\right)$ sampled from some distribution, $(k=1, \ldots, m)$ find hypothesis $\mathrm{h}: \mathscr{X} \rightarrow\{0,1\}$ maximizing \# satisfied bags B_{k}.

Our focus: When the target concept f is a linear threshold function (LTF) or halfspace.

- $f=\operatorname{pos}(\langle\mathbf{r}, \mathbf{x}\rangle+c)$ where $\operatorname{pos}(a)=1$ if $a>0,0$ otherwise.

Previous Work

[Saket, NeurlPS'21]: Given $\left(\left\{\left(\mathrm{B}_{\mathrm{k}}, \sigma\left(\mathrm{B}_{\mathrm{k}}, \mathrm{f}\right)\right)\right\}: \mathrm{k}=1, \ldots, \mathrm{~m}\right)$ s.t. $\left|\mathrm{B}_{\mathrm{k}}\right| \leq 2$, f is unknown LTF:

- Efficient algorithm that finds an LTF satisfying $2 / 5$ fraction of all the bags.
- NP-hard to find any fn. of constantly many LTFs satisfying ($1 / 2+\delta$)-frac. of the bags.

Previous Work

[Saket, NeurlPS'21]: Given $\left(\left\{\left(\mathrm{B}_{\mathrm{k}}, \sigma\left(\mathrm{B}_{\mathrm{k}}, \mathrm{f}\right)\right)\right\}: \mathrm{k}=1, \ldots, \mathrm{~m}\right)$ s.t. $\left|\mathrm{B}_{\mathrm{k}}\right| \leq 2$, f is unknown LTF:

- Efficient algorithm that finds an LTF satisfying $2 / 5$ fraction of all the bags.
- NP-hard to find any fn. of constantly many LTFs satisfying ($1 / 2+\delta$)-frac. of the bags.

Is there algorithm satisfying $\boldsymbol{\Omega}(1)$-fraction of bags of size > 2 ?

Our Contributions

Given $\left(\left\{\left(B_{k}, \sigma\left(B_{k}, f\right)\right)\right\}: k=1, \ldots, m\right)$ s.t. $\left|B_{k}\right| \leq q, f$ is unknown LTF:

Our Contributions

Given $\left(\left\{\left(B_{k}, \sigma\left(B_{k}, f\right)\right)\right\}: k=1, \ldots, m\right)$ s.t. $\left|B_{k}\right| \leq q, f$ is unknown LTF:
Algorithms:

- If $q=3$, an efficient algorithm to satisfy at least (1/12)-fraction of the bags.

Our Contributions

Given $\left(\left\{\left(B_{k}, \sigma\left(B_{k}, f\right)\right)\right\}: k=1, \ldots, m\right)$ s.t. $\left|B_{k}\right| \leq q, f$ is unknown LTF:
Algorithms:

- If $q=3$, an efficient algorithm to satisfy at least (1/12)-fraction of the bags.
- For $q>3$, an efficient algorithm to weakly-satisfy $\boldsymbol{\Omega}(1 / \mathrm{q})$-fraction of bags.

Our Contributions

Given $\left(\left\{\left(B_{k}, \sigma\left(B_{k}, f\right)\right)\right\}: k=1, \ldots, m\right)$ s.t. $\left|B_{k}\right| \leq q, f$ is unknown LTF:
Algorithms:

- If $q=3$, an efficient algorithm to satisfy at least (1/12)-fraction of the bags.
- For q > 3, an efficient algorithm to weakly-satisfy $\boldsymbol{\Omega}(1 / \mathrm{q})$-fraction of bags.

Hardness: NP-hard to find any function of constantly many LTFs that

- satisfies $(1 / q+\delta)$-fraction of bags for any constant $q \in ъ^{+}$,
- \quad satisfies $(4 / 9+\delta)$-fraction of bags for $q=2$.
for any constant $\delta>0$.

SDP of [Saket, NeurlPS'21] for $q=2$:

We can assume that the satisfying LTF is $\operatorname{pos}\left(\left\langle\mathbf{r}_{*}, \mathbf{x}\right\rangle\right)$ with non-zero margin.
For bag $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}:\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{2}\right\rangle \leq 0$ if B is non-monochromatic.

SDP of [Saket, NeurlPS'21] for $q=2$:

We can assume that the satisfying LTF is $\operatorname{pos}\left(\left\langle\mathbf{r}_{*}, \mathbf{x}\right\rangle\right)$ with non-zero margin.
For bag $\mathrm{B}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}:\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{2}\right\rangle \leq 0$ if B is non-monochromatic.

With $\mathbf{r}_{*}\left(\mathbf{r}_{*}\right)^{\top}$ as a soln. write the feasible SDP for symmetric psd \mathbf{R} :
$\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R} \mathbf{x}_{2} \leq 0$ for all non-mon. bags $B \&\left(\mathbf{x}_{\mathrm{i}}\right)^{\top} \mathbf{R} \mathbf{x}_{\mathrm{i}}>0$ for all \mathbf{x}_{i}.

SDP of [Saket, NeurlPS'21] for $q=2$:

We can assume that the satisfying LTF is $\operatorname{pos}\left(\left\langle\mathbf{r}_{*}, \mathbf{x}\right\rangle\right)$ with non-zero margin.
For bag $\mathrm{B}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}:\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{2}\right\rangle \leq 0$ if B is non-monochromatic.

With $\mathbf{r}_{*}\left(\mathbf{r}_{*}\right)^{\top}$ as a soln. write the feasible SDP for symmetric psd \mathbf{R} :
$\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R} \mathbf{x}_{2} \leq 0$ for all non-mon. bags $B \&\left(\mathbf{x}_{\mathrm{i}}\right)^{\top} \mathbf{R} \mathbf{x}_{\mathrm{i}}>0$ for all \mathbf{x}_{i}.
Factor $\mathbf{R}=\mathbf{L}^{\top} \mathbf{L}$. Rounding based on sign of $\langle\mathbf{L x}, \mathbf{g}\rangle$ for random gaussian vector \mathbf{g}.

SDP of [Saket, NeurlPS'21] for $q=2$:

We can assume that the satisfying LTF is $\operatorname{pos}\left(\left\langle\mathbf{r}^{*}, \mathbf{x}\right\rangle\right)$ with non-zero margin.
For bag $\mathrm{B}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}:\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{2}\right\rangle \leq 0$ if B is non-monochromatic.

With $\mathbf{r}_{*}\left(\mathbf{r}_{*}\right)^{\top}$ as a soln. write the feasible SDP for symmetric psd \mathbf{R} :
$\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R} \mathbf{x}_{2} \leq 0$ for all non-mon. bags $B \&\left(\mathbf{x}_{\mathrm{i}}\right)^{\top} \mathbf{R} \mathbf{x}_{\mathrm{i}}>0$ for all \mathbf{x}_{i}.
Factor $\mathbf{R}=\mathbf{L}^{\top} \mathbf{L}$. Rounding based on sign of $\left\langle\mathbf{L x}_{\mathrm{i}}, \mathbf{g}\right\rangle$ for random gaussian vector \mathbf{g}.

Problem: For $q=3$: the sign of $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{2}\right\rangle$ not determined by the label proportion for non-monochromatic bags.

Our novel SDP for $q=3$:

Key idea: Use relaxations of \mathbf{R} using \geqslant partial ordering (Loewner order).

Our novel SDP for $q=3$:

Key idea: Use relaxations of \mathbf{R} using \geqslant partial ordering (Loewner order).
Observation: For a non-monochromatic bag $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$
at least one of $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{2}\right\rangle$ or $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{3}\right\rangle$ is negative.

Our novel SDP for $q=3$:

Key idea: Use relaxations of \mathbf{R} using \geqslant partial ordering (Loewner order).
Observation: For a non-monochromatic bag $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$
at least one of $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{2}\right\rangle$ or $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{3}\right\rangle$ is negative.
$\mathbf{R}^{\{1, j\}}=\mathbf{R}:=\mathbf{r}_{*}\left(\mathbf{r}_{*}\right)^{\top}$ if $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{\mathrm{j}}\right\rangle<0$ and $0 \mathrm{o} / \mathrm{w}$., is a feasible soln to: $\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,2\}} \mathbf{x}_{2} \leq 0, \quad\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,3\}} \mathbf{x}_{3} \leq 0,\left(\mathbf{x}_{1}\right)^{\top}\left(\mathbf{R}^{\{1,2\}}+\mathbf{R}^{\{1,3\}}\right) \mathbf{x}_{1} \geq\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R} \mathbf{x}_{1}, \quad \mathbf{R} \geqslant \mathbf{R}^{\{1, j\}}$ for $\mathrm{j}=2,3$
\forall non-monochromatic bags $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$.

Our novel SDP for $q=3$:

Key idea: Use relaxations of \mathbf{R} using \geqslant partial ordering (Loewner order).
Observation: For a non-monochromatic bag $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$
at least one of $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{2}\right\rangle$ or $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{3}\right\rangle$ is negative.
$\mathbf{R}^{\{1, j\}}=\mathbf{R}:=\mathbf{r}_{*}\left(\mathbf{r}_{*}\right)^{\top}$ if $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{\mathrm{j}}\right\rangle<0$ and $0 \mathrm{o} / \mathrm{w}$., is a feasible soln to: $\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,2\}} \mathbf{x}_{2} \leq 0, \quad\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,3\}} \mathbf{x}_{3} \leq 0,\left(\mathbf{x}_{1}\right)^{\top}\left(\mathbf{R}^{\{1,2\}}+\mathbf{R}^{\{1,3\}}\right) \mathbf{x}_{1} \geq\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R} \mathbf{x}_{1}, \quad \mathbf{R} \geqslant \mathbf{R}^{\{1, j\}}$ for $\mathrm{j}=2,3$
\forall non-monochromatic bags $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$.
Rounding: WLOG $\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,2\}} \mathbf{x}_{1} \geq\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R} \mathbf{x}_{1} / 2$. Factor $\mathbf{R}=\mathbf{L}^{\top} \mathbf{L}$.

Our novel SDP for $q=3$:

Key idea: Use relaxations of \mathbf{R} using \geqslant partial ordering (Loewner order).
Observation: For a non-monochromatic bag $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$
at least one of $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{2}\right\rangle$ or $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{3}\right\rangle$ is negative.
$\mathbf{R}^{\{1, j\}}=\mathbf{R}:=\mathbf{r}_{*}\left(\mathbf{r}_{*}\right)^{\top}$ if $\left\langle\mathbf{r}_{*}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{r}_{*}, \mathbf{x}_{\mathrm{j}}\right\rangle<0$ and $\mathbf{0} 0 /$ w., is a feasible soln to: $\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,2\}} \mathbf{x}_{2} \leq 0, \quad\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,3\}} \mathbf{x}_{3} \leq 0,\left(\mathbf{x}_{1}\right)^{\top}\left(\mathbf{R}^{\{1,2\}}+\mathbf{R}^{\{1,3\}}\right) \mathbf{x}_{1} \geq\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R} \mathbf{x}_{1}, \mathbf{R} \geqslant \mathbf{R}^{\{1, j\}}$ for $\mathrm{j}=2,3$
\forall non-monochromatic bags $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$.
Rounding: WLOG $\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,2\}} \mathbf{x}_{1} \geq\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R} \mathbf{x}_{1} / 2$. Factor $\mathbf{R}=\mathbf{L}^{\top} \mathbf{L}$.
Can we show that $\angle L x_{1}, L x_{2}$ is at least some constant $\boldsymbol{\theta}_{0}>0$?

Using our main technical Lemma

A novel characterization of $\mathbf{A} \geqslant \mathbf{B}(\ddagger)$ for symmetric psd matrices.
Lemma: For sym. psd \mathbf{A} we can efficiently factor $\mathbf{A}=L^{\top} L$ s.t. for all sym. psd B,

$$
(\ddagger) \Leftrightarrow \text { there exists } \mathbf{C} \text { s.t. } \mathbf{B}=\mathbf{L}^{\top} \mathbf{C} \text { and } \mathbf{A} \geqslant \mathbf{C}^{\top} \mathbf{C} .
$$

Using our main technical Lemma

A novel characterization of $\mathbf{A} \geqslant \mathbf{B}(\ddagger)$ for symmetric psd matrices.
Lemma: For sym. psd \mathbf{A} we can efficiently factor $\mathbf{A}=L^{\top} L$ s.t. for all sym. psd B,

$$
(\ddagger) \Leftrightarrow \text { there exists } \mathbf{C} \text { s.t. } \mathbf{B}=\mathbf{L}^{\top} \mathbf{C} \text { and } \mathbf{A} \geqslant \mathbf{C}^{\top} \mathbf{C} .
$$

Apply to $\mathbf{R} \geqslant \mathbf{R}^{\{1,2\}}$ to get $\mathbf{R}^{\{1,2\}}=\mathbf{L}^{\top} \mathbf{C}$ s.t. $\mathbf{R} \geqslant \mathbf{C}^{\top} \mathbf{C}$

Using our main technical Lemma

A novel characterization of $\mathbf{A} \geqslant \mathbf{B}(\ddagger)$ for symmetric psd matrices.
Lemma: For sym. psd \mathbf{A} we can efficiently factor $\mathbf{A}=L^{\top} L$ s.t. for all sym. psd B,

$$
(\ddagger) \Leftrightarrow \text { there exists } \mathbf{C} \text { s.t. } \mathbf{B}=\mathbf{L}^{\top} \mathbf{C} \text { and } \mathbf{A} \geqslant \mathbf{C}^{\top} \mathbf{C} .
$$

Apply to $\mathbf{R} \geqslant \mathbf{R}^{\{1,2\}}$ to get $\mathbf{R}^{\{1,2\}}=\mathbf{L}^{\top} \mathbf{C}$ s.t. $\mathbf{R} \geqslant \mathbf{C}^{\top} \mathbf{C}$
Now, $\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,2\}} \mathbf{x}_{2} \leq 0$ means that $\angle \mathrm{Lx}, \mathbf{C x}_{1} \geq \pi / 2$
OTOH R $\geqslant \mathbf{C}^{\top} \mathbf{C} \Rightarrow L^{\top} L \geqslant C^{\top} C \Rightarrow\left\|L x_{1}\right\| \geq\left\|C x_{1}\right\| \quad$ - (1).
(1) along with $\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,2\}} \mathbf{x}_{1} \geq\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R} \mathbf{x}_{1} / 2$ imply that $\angle \mathbf{L} \mathbf{x}_{1}, \mathbf{C} \mathbf{x}_{1} \leq \pi / 3$. Thus, $\angle \mathbf{L} \mathbf{x}_{1}, \mathbf{L} \mathbf{x}_{2} \geq \pi / 6$.

Using our main technical Lemma

A novel characterization of $\mathbf{A} \geqslant \mathbf{B}(\ddagger)$ for symmetric psd matrices.
Lemma: For sym. psd \mathbf{A} we can efficiently factor $\mathbf{A}=L^{\top} L$ s.t. for all sym. psd B,

$$
(\ddagger) \Leftrightarrow \text { there exists } \mathbf{C} \text { s.t. } \mathbf{B}=\mathbf{L}^{\top} \mathbf{C} \text { and } \mathbf{A} \geqslant \mathbf{C}^{\top} \mathbf{C} .
$$

Apply to $\mathbf{R} \geqslant \mathbf{R}^{\{1,2\}}$ to get $\mathbf{R}^{\{1,2\}}=\mathbf{L}^{\top} \mathbf{C}$ s.t. $\mathbf{R} \geqslant \mathbf{C}^{\top} \mathbf{C}$
Now, $\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,2\}} \mathbf{x}_{2} \leq 0$ means that $\angle \mathrm{Lx}, \mathbf{C x}_{1} \geq \pi / 2$
OTOH R $\geqslant \mathbf{C}^{\top} \mathbf{C} \Rightarrow \mathbf{L}^{\top} \mathbf{L} \geqslant \mathbf{C}^{\top} \mathbf{C} \Rightarrow\left\|L x_{1}\right\| \geq\left\|C x_{1}\right\| \quad$ - (1).
(1) along with $\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R}^{\{1,2\}} \mathbf{x}_{1} \geq\left(\mathbf{x}_{1}\right)^{\top} \mathbf{R} \mathbf{x}_{1} / 2$ imply that $\angle \mathbf{L} \mathbf{x}_{1}, \mathbf{C} \mathbf{x}_{1} \leq \pi / 3$. Thus, $\angle \mathbf{L} \mathbf{x}_{1}, \mathbf{L} \mathbf{x}_{2} \geq \pi / 6$.

Future Work: Algorithm for satisfying bags of size >3.
LLP-learning other classifiers, deviation-based objectives.

