

Learning Audio-Visual Dynamics Using Scene Graphs for Audio Source Separation

Moitreya Chatterjee^{1,2} Narendra Ahuja² Anoop Cherian¹

¹ Mitsubishi Electric Research Labs (MERL)

² University of Illinois at Urbana – Champaign (UIUC)

Motivation

Motivation:

Intelligent systems need to draw meaningful deductions about objects in the scene by associating their <u>visual appearance</u> and <u>motion</u> with their <u>audio signatures</u>.

Problem Setup

Graph Construction

Model Architecture - Overview

MITSUBISHI

Experiments - Datasets

We conduct experiments on two audio-visual video datasets.

ASIW Dataset: A novel dataset of 11k+ "in the wild" videos, 10s long, adapted from the AudioCaps dataset, consisting of 14 auditory object categories [1].

The AVE Dataset: A dataset of 2.5k+ videos, 10s long, collected from YouTube [2]. Consists of 18 stationary as well as moving sound source classes.

[1] Chatterjee, M., Le Roux, J., Ahuja, N., & Cherian, A. (2021). Visual scene graphs for audio source separation. In *Proc. IEEE/CVF International Conference on Computer Vision* (pp. 1204-1213).

[2] Tian, Y., et al. (2018). Audio-visual event localization in unconstrained videos. In Proc. of ECCV (pp. 247-263).

Performance: Mixture of Single Source Audios

Audio Separation	ASIW			AVE		
	SDR	SIR	SAR	SDR	SIR	SAR
Co-Separation [ICCV'19]	6.6	12.9	12.6	3.9	9.3	7.8
AVSGS [ICCV'21]	8.8	14.1	13.0	5.8	10.4	8.2
Ours (Only Graph)	9.0	14.3	13.7	6.5	12.4	8.9
Ours (Graph + Motion)	9.6	14.5	14.1	7.2	13.3	9.4

Direction Prediction	ASIW		AVE		
	10-class	28-class	10-class	28-class	
Majority Vote	27.3	25.4	29.2	24.3	
Ours (Graph + Motion)	42.5	41.3	38.5	36.8	

The results show that our method achieves state-of-the-art performance across both datasets, for audio separation as well as for direction prediction.

ASIW Dataset (Duet): Qualitative Result

Input Video (+ Mixed Audio)

Separated Source 1 (dog)

Direction of 3D motion predicted from separated audio Green dot is the ground truth motion direction Yellow arrow is the predicted direction

© MERL

Separated Source 2 (water splash)

Direction of 3D motion predicted from separated audio Green dot is the ground truth motion direction Yellow arrow is the predicted direction

© MERL

Thank you!

Project Page:

https://sites.google.com/site/metrosmiles/research/research-projects/asmp