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Proposed Method Sketch 

- Jointly train         and          to minimize an upper bound of the evaluation error.

• Fixed          ,                           only on state-actions visited by          .

• Fixed          ,  optimize           with a regularization based on         .   
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Background 
- Benefits of offline MBRL

- Offline model-free RL


• Only know reward and next state at 
state-actions within the dataset.


• Off-policy issue                                .

- Offline model-based RL


• Estimate reward and next state at 
new state-actions.


•  on-policy                               .≈

̂r, ̂s

a

Synthetic Data
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Background 

- Most offline MBRL: pre-train a fixed dynamic model on           . 


• Objective: MLE — “simply a mimic of the world.”


• Usage: improve the policy.

- Objective mismatch: model training  model usage.


• Especially when            is limited and          is hard to learn. 

≠

≈



Proposed Method: Bounding the Evaluation Error
- A tractable upper bound for the evaluation error

J(π, P*) − J(π, ̂P ) ≤ C ⋅ Dπ(P*, ̂P ), with
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πb,γ [ω(s, a) KL (P*(s′ | s, a) πb(a′ | s′ ) | | ̂P (s′ | s, a) π(a′ | s′ ))],
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Proposed Method: Bounding the Evaluation Error
- A tractable upper bound for the evaluation error

-  is the behavior policy           .πb

-  is the offline-data distribution           .dP*
πb,γ

-  is the density ratio between           and visitation freq. of          .ω(s, a) ≜
dP*

π,γ(s, a)
dP*

πb,γ(s, a)

J(π, P*) − J(π, ̂P ) ≤ C ⋅ Dπ(P*, ̂P ), with
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Proposed Method: Model Training

- Fix          , we train the model          by

-   is one transition in          .(s, a, s′ )

- Given , a stable weighted MLE objective.ω(s, a)

ℓ( ̂P ) ≜ − 𝔼(s,a,s′ )∼dP*
πb,γ [ω(s, a) log { ̂P (s′ | s, a)}] = Dπ(P*, ̂P ) − C′ , with C′ a constant to ̂P .



Proposed Method: Policy Learning
- A lower-bound of          performance: J (π, ̂P ) − C ⋅ Dπ(P*, ̂P ) .



Proposed Method: Policy Learning
- A lower-bound of          performance:

- Fix         , empirically helpful to construct the regularizer by:

J (π, ̂P ) − C ⋅ Dπ(P*, ̂P ) .



Proposed Method: Policy Learning
- A lower-bound of          performance:

- Fix         , empirically helpful to construct the regularizer by:

• Removing the   .⋅

J (π, ̂P ) − C ⋅ Dπ(P*, ̂P ) .



Proposed Method: Policy Learning
- A lower-bound of          performance:

- Fix         , empirically helpful to construct the regularizer by:

• Removing the   .⋅

• Applying a further relaxation

• Stronger regularizer: regularizes           at both  and .s s′ 

J (π, ̂P ) − C ⋅ Dπ(P*, ̂P ) .

Dπ(P*, ̂P ) ≤ C′ ′ ⋅ KL (P*(s′ | s, a) πb(a′ | s′ ) dP*
πb,γ(s, a) | | ̂P (s′ | s, a) π(a′ | s′ ) dP*

πb,γ(s) π(a | s))



Proposed Method: Policy Learning
- A lower-bound of          performance:

- Fix         , empirically helpful to construct the regularizer by:

• Removing the   .⋅

• Applying a further relaxation

• Stronger regularizer: regularizes           at both  and .s s′ 

• Changing KL-divergence to Jensen-Shannon divergence.

J (π, ̂P ) − C ⋅ Dπ(P*, ̂P ) .

Dπ(P*, ̂P ) ≤ C′ ′ ⋅ KL (P*(s′ | s, a) πb(a′ | s′ ) dP*
πb,γ(s, a) | | ̂P (s′ | s, a) π(a′ | s′ ) dP*

πb,γ(s) π(a | s))
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Proposed Method: Density-Ratio Training

- Fixed-point style method, saddle-point optimization .

- A simple MSE objective:

- Based on the “forward” Bellman equation for  —not tractable        !


• Use Q-function as test function and  on both sides.


• Primal-dual relation between  and Q-function in OPE.

ω(s, a)

∑(s′ ,a′ )

ω(s, a)

- Only requires samples from          and the initial state-distribution.

𝔼(s,a)∼dP*
πb,γ [ω(s, a) ⋅ Q ̂P

π (s, a)] = γ 𝔼(s, a, s′ ) ∼ dP*
πb,γ

a′ ∼ π( ⋅ | s′ )
[ω(s, a) ⋅ Q ̂P

π (s′ , a′ )] + (1 − γ) 𝔼 s ∼ μ0( ⋅ )
a ∼ π( ⋅ | s)

[Q ̂P
π (s, a)] .



Results: Main Method 

- Our offline Alternating Model-Policy Learning (AMPL) performs well on D4RL tasks.
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Results: Main Method 

- Learn well on the MuJoCo datasets.

- Robust and good results on the challenging Adroit and Maze2D datasets.
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Ablation Study I: Does weighted model (re)training help?

- Variant: training         only at the beginning using MLE — No Weights (NW).
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Ablation Study I: Does weighted model (re)training help?

- Variant: training         only at the beginning using MLE — No Weights (NW).

- On all three domains, the NW variant generally underperforms the main method.
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Ablation Study II: Other density-ratio estimation methods?
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- Variant:  is estimated by VPM, GenDICE, and DualDICE.ω(s, a)

- On all three domains, these three variants generally underperform our method.



Ablation Study II: Other density-ratio estimation methods?

- Distribution plot of  during the training process, on “walker2d-medium-replay.”log(ω(s, a))
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Ablation Study II: Other density-ratio estimation methods?

- Distribution plot of  during the training process, on “walker2d-medium-replay.”log(ω(s, a))

- Three alternatives can be unstable to provide good density-ratio for         training.
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Ablation Study III: A weighted policy regularizer?

- Variant: policy regularizer is weighted by the density ratio  (WPR).ω(s, a)
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Ablation Study III: A weighted policy regularizer?

- Variant: policy regularizer is weighted by the density ratio  (WPR).ω(s, a)

- Additional instability in training            underperform!⟹
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Summary
- Goal: close the mismatched model objectives in offline MBRL.


- Method: offline Alternating Model-Policy Learning.

QR code for the full paper! QR code for the GitHub Repo!


