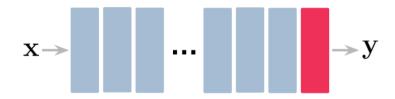


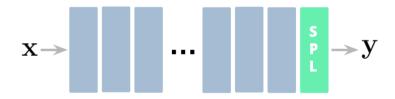
Kareem Ahmed (he/him)

joint work with Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari

integrate *hard* (logical) and *soft* constraints



guarantee that predictions satisfy constraints


fast and exact gradients

make any neural network architecture...

... guarantee all predictions conform to constraints

Ground Truth

e.g. predict shortest path in a map

given x // e.g. a tile map

Ground Truth

NeSy structured output prediction (SOP) tasks

Vlastelica et al., "Differentiation of blackbox combinatorial solvers", ICLR, 2020

given \mathbf{x} // e.g. a tile map find $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x})$ // e.g. a configurations of edges in a grid

Ground Truth

NeSy structured output prediction (SOP) tasks

Vlastelica et al., "Differentiation of blackbox combinatorial solvers", ICLR, 2020

given $\mathbf{x} \quad // e.g.$ a tile map find $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x}) \quad // e.g.$ a configurations of edges in a grid s.t. $\mathbf{y} \models \mathsf{K} \quad // e.g.$, that form a valid path

Ground Truth

NeSy structured output prediction (SOP) tasks

Vlastelica et al., "Differentiation of blackbox combinatorial solvers", ICLR, 2020

 $\begin{array}{l} \text{given } \mathbf{x} \quad // \textit{e.g. a tile map} \\ \text{find } \mathbf{y}^* = \operatorname*{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x}) \quad // \textit{e.g. a configurations of edges in a grid} \\ \text{s.t. } \mathbf{y} \models \mathsf{K} \quad // \textit{e.g., that form a valid path} \end{array}$

// for a 12×12 grid, 2^{144} states but only 10^{10} valid ones!

Ground Truth

NeSy structured output prediction tasks

Vlastelica et al., "Differentiation of blackbox combinatorial solvers", ICLR, 2020

Ground Truth

ResNet-18

neural nets struggle to satisfy validity constraints!

Constraint losses

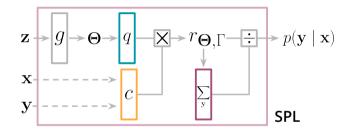
Ground Truth

ResNet-18

Semantic Loss

even losses cannot guarantee consistency at test time!

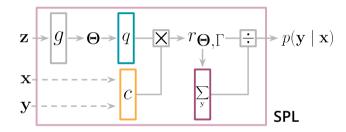
Ground Truth


ResNet-18

Semantic Loss

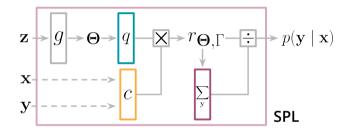
SPL (ours)

you can predict valid paths 100% of the time!

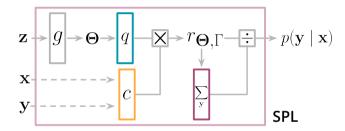


$$p(\mathbf{y} \mid \mathbf{x}) = \boldsymbol{q}_{\boldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z}))$$

 $oldsymbol{q}_{oldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z}))$ is an expressive distribution over labels



$$p(\mathbf{y} \mid \mathbf{x}) = \boldsymbol{q}_{\boldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z})) \cdot \boldsymbol{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y})$$


 $c_{\mathsf{K}}(\mathbf{x},\mathbf{y})$ encodes the constraint $\mathbbm{1}\{\mathbf{x},\mathbf{y}\models\mathsf{K}\}$

$$p(\mathbf{y} \mid \mathbf{x}) = \boldsymbol{q}_{\boldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z})) \cdot \boldsymbol{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y})$$

a product of experts :(

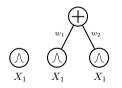
$$p(\mathbf{y} \mid \mathbf{x}) = \boldsymbol{q}_{\Theta}(\mathbf{y} \mid g(\mathbf{z})) \cdot \boldsymbol{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y}) / \boldsymbol{\mathcal{Z}}(\mathbf{x})$$
$$\boldsymbol{\mathcal{Z}}(\mathbf{x}) = \sum_{\mathbf{y}} q_{\Theta}(\mathbf{y} \mid \mathbf{x}) \cdot \boldsymbol{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y})$$

Can we design q and c to be expressive models yet yielding a tractable product?

Can we design q and c to be expressive models yet yielding a tractable product?

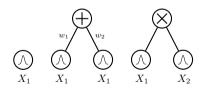
yes! as circuits!

A grammar for tractable computational graphs

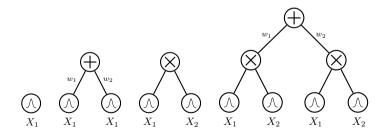

I. A simple tractable function is a circuit

 X_1

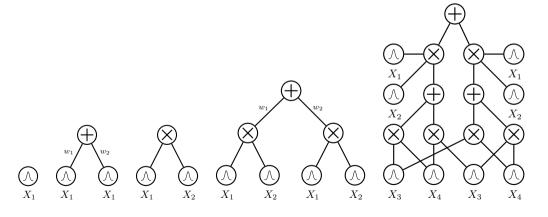
A grammar for tractable computational graphs


I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit



A grammar for tractable computational graphs


I. A simple tractable function is a circuit
II. A weighted combination of circuits is a circuit
III. A product of circuits is a circuit

A grammar for tractable computational graphs

A grammar for tractable computational graphs

1. A grammar for tractable models

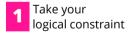
One formalism to represent many models. #HMMs #Trees #XGBoost, ...

2. Expressiveness

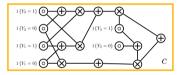
Competitive with intractable models, VAEs, Flow ... # hierachical # mixtures # polynomials

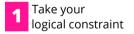
1. A grammar for tractable models

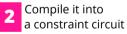
One formalism to represent many models. #HMMs #Trees #XGBoost, ...

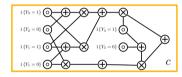

2. Expressiveness

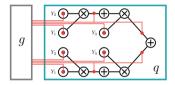
Competitive with intractable models, VAEs, Flow ... # hierachical # mixtures # polynomials

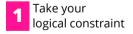

3. Tractability == Structural Properties!!!

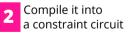

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. *#marginals #expectations #MAP*, *#product ...*

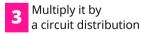

$$\begin{split} \mathsf{K}:\, (Y_1=1 \implies Y_3=1) \\ \wedge \quad (Y_2=1 \implies Y_3=1) \end{split}$$

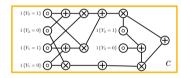

$$\begin{split} \mathsf{K}:\, (Y_1=1 \implies Y_3=1) \\ \wedge \quad (Y_2=1 \implies Y_3=1) \end{split}$$

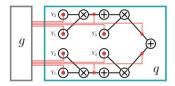


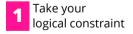


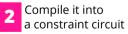


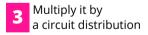

$$\mathsf{K} : (Y_1 = 1 \implies Y_3 = 1) \\ \land \quad (Y_2 = 1 \implies Y_3 = 1)$$

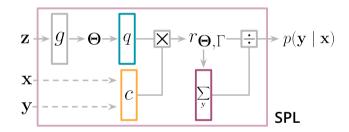









$$\mathsf{K} : (Y_1 = 1 \implies Y_3 = 1) \\ \land \quad (Y_2 = 1 \implies Y_3 = 1)$$

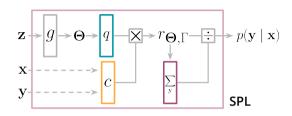


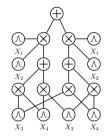
how good are SPLs?

	1		

	Simple Path			Preference Learning		
Architecture	Exact	Hamming	Consistent	Exact	Hamming	Consistent
MLP+FIL	5.6	85.9	7.0	1.0	75.8	2.7
MLP+ \mathcal{L}_{SL}	28.5	83.1	75.2	15.0	72.4	69.8
MLP+NeSyEnt	30.1	83.0	91.6	18.2	71.5	96.0
MLP+SPL	37.6	88.5	100.0	20.8	72.4	100.0

Experiments




Architecture	Exact	Hamming	Consistent
ResNet-18+FIL	55.0	97.7	56.9
ResNet-18+ \mathcal{L}_{SL}	59.4	97.7	61.2
ResNet-18+SPL	78.2	96.3	100.0

Experiments

DATASET	EXACT MATCH		
	HMCNN	MLP+SPL	
CellCycle	3.05 ± 0.11	3.79 ± 0.18	
Derisi	1.39 ± 0.47	2.28 ± 0.23	
Eisen	5.40 ± 0.15	6.18 ± 0.33	
Expr	4.20 ± 0.21	5.54 ± 0.36	
Gasch1	3.48 ± 0.96	4.65 ± 0.30	
Gasch2	3.11 ± 0.08	3.95 ± 0.28	
Seq	5.24 ± 0.27	7.98 ± 0.28	
Spo	1.97 ± 0.06	1.92 ± 0.11	
DIATOMS	48.21 ± 0.57	58.71 ± 0.68	
ENRON	5.97 ± 0.56	8.18 ± 0.68	
IMCLEF07A	79.75 ± 0.38	86.08 ± 0.45	
Imclef07d	76.47 ± 0.35	81.06 ± 0.68	

Check out our code at github.com/KareemYousrii/SPL and come to our poster to learn more!