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We consider Reinforcement Learning in a discrete, undiscounted,

infinite-horizon Markov Decision Problem (MDP) under the

average reward criterion, and focus on the maximization of this

criterion, when the learner does not know the rewards nor the tran-

sitions of the MDP. 1



Objective - Average reward criterion

The cumulative reward at time T , of policy π in MDP M is

Vπ,M(T ) = Eπ,M

[ T∑
t=1

rt

]
.

The regret of policy π at time T in MDP M is defined as

Rπ (M,T ) = max
η

(Vη,M(T ))− Vπ,M(T ) .

Objective: minimizing the regret in the long run, and thus max-

imizing the average-reward,

lim
T→∞

1

T
Vπ,M(T ).
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IMED-RL

We propose a policy, IMED-RL, that we prove to be optimal and

show its impressive numerical performances.
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Instance dependent objective

In this work, one is interested in being optimal with respect to

each specific instance. One must therefore assess the speed at

which one can learn on each specific MDP. Hypothesis are therefore

necessary to state the complexity of each instance.

Light-tail rewards and Semi-bounded rewards (support of the

reward distribution is bounded from above)

Ergodicity The MDP is ergodic, ∀s, s ′,∀π,∃t ∈ N : ptπ(s
′|s) > 0.
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Assess optimality

Thanks to the ergodic assumption, interesting quantities can be

defined locally.

The sub-optimality gap ∆s,a (M) in M is a measure of the local

regret incurred by a policy that would play action a in state s.

The potential γs(M) is a number used to assess optimality of actions

in state s of MDP M.

The sub-optimality cost, Ks,a (M) = Ks,a (M, γs(M)), is a mea-

sure of the local complexity of distinguishing the sub-optimal action

a from an optimal one in state s.
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Regret decomposition

Under the ergodic assumption, the regret of any policy π can be

decomposed as

Rπ (M,T ) =
∑
s,a

Eπ [Ns,a(T )]∆s,a (M) + C ,

where Ns,a(T ) =
∑T

t=1 1 {st = s, at = a} counts the number of

time the state-action pair (s, a) has been sampled.
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Regret bounds and optimality of IMED-RL

Theorem (Regret lower bound)

Let M be an MDP satisfying hypothesis. For all policy π, the

regret lower bound is

lim inf
T→∞

Rπ (M,T )

logT
⩾

∑
(s,a)∈C(M)

∆s,a (M)

Ks,a (M)
.

Theorem (Regret upper bound - Asymptotic Optimality)

IMED-RL is asymptotically optimal, that is,

lim
T→+∞

RIMED-RL (M,T )

logT
⩽

∑
(s,a)∈C(M)

∆s,a (M)

Ks,a (M)
.
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IMED-RL - Intuition

IMED-RL is a model-based algorithm that keeps empirical estimates

of the transitions p and rewards r.

While policy iteration constructs a sequence of policies that are

increasingly better, IMED-RL constructs a sequence of sub-MDPs

of the original MDP that are increasingly better with high probability.

A sub-MDP is better than another if its optimal gain is better. Sub-

MDP are built by restricting the action space of the original MDP:

the skeleton (sub-MDP) at time t, is defined by

As(t) =

{
a ∈ As : Ns,a(t) ⩾ log2

(
max
a′∈As

Ns,a′(t)

)}
.
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Indexed Minimum Empirical Divergence for RL

Algorithm 1: IMED-RL

Require State-Action space of an MDP with hypothesis

Initialisation State s1

for t ⩾ 1 do

Sample at ∈ arg min
a∈Ast

Hs,a(t)

where Hs,a(t) = Ns,a(t)Ks,a

(
M̂t(A(t)), γ̂s(t)

)
+ logNs,a(t).
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Take-home message

IMED-RL is a provably optimal RL algorithm in the average-reward

setting under the ergodic dynamic hypothesis.

Nonetheless, IMED-RL has impressive numerical performances

beyond the ergodic case, in the communicating one.

This raises the question on how to adapt IMED-RL to handle the the-

oretically more challenging framework of communicating MDPs.
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Thank you

� Talk with us at poster 52874

§ Code available on github at fabienpesquerel/IMED-RL

# Reach us at fabien.pesquerel@inria.fr

More research at

� fabienpesquerel.github.io

� odalricambrymmaillard.neowordpress.fr
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