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Motivation

Conservation laws are fundamental laws which govern the evolution of various processes in

nature. Examples include conservation of charge, energy, momentum etc.

In this paper we focus on conservation laws in networked physical systems.

For instance in electric

networks, the dynamics of

flows (currents) are governed

by a conservation law

(Kirchoff’s law).

This phenomenon can be

observed in conceptual

networks such as brain and

social networks.

The dynamics in general can be

described by a balance

equation of the form

X = B∗Y , where X, Y are the

vectors of injected flows and

node potentials and B∗ is the
graph Laplacian, which

captures the connectivity

structure of the network.

Figure 1. Electric networks, Water networks, Brain networks

Problem Setup

Let B∗ � 0, then we can rewrite the balance equation as

Y = B∗−1X (1)

where Y, X ∈ Rp are the vectors of node potentials and injected flows respectively and B∗ ∈
Rp×p is a sparse positive definite matrix that captures the connectivity structure of the network.

Goal: Learn the structure of the network

given samples from observation vector Y
and access to only the statistics of X ie.

ΣX .

We propose an `1− regularized Maximum

Likelihood Estimator(MLE) B̂ to infer the

sparsity structure of B∗ in the high

dimensional regime. Figure 2. Sparsity structure determines edge connectivity

ie. if B∗
ij = 0 then (i, j) /∈ E

A Convex Estimator

B̂ = arg min
B=B>,B�0

Tr(S BΣ−1
X B︸ ︷︷ ︸

ΘY

) − log det(B2) + λn‖B‖1,off

 (2)

where ‖B‖1,off ,
∑

i 6=j |Bij|, S is the sample covariance matrix from n i.i.d samples of observation

Y and λn is the regularization parameter.

Lemma:

For any λn > 0 and B � 0, the `1−regularized MLE is strictly convex and has a unique minimizer.

Assumptions

1. Mutual incoherence condition:

Let Γ∗ be the Hessian of the log-determinant function,

Γ∗ , ∇2
B log det(B)|B=B∗ = B∗−1 ⊗ B∗−1. (3)

The matrix B satisfies the mutual incoherence condition if there exists some α ∈ (0, 1] such
that,
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∞ ≤ 1 − α.

2. Hessian regularity condition:

Let d be the maximum number of non zero entries among all the rows in B∗ (i.e., the degree of
the underlying graph), Θ∗ = B∗Σ−1

X B∗. Then,∣∣∣∣∣∣∣∣∣Γ∗−1
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Theoretical Results

Theorem 1:

Let the vector of injected flows X = (X1, . . . , Xp) be sub-Gaussian. Under some assumptions,

if the number of samples n = Ω(d2 log p) (high dim regime, n � p) then with high probability,

the estimator B̂ has the following properties:

Exact (and signed) support recovery: B̂Ec = 0
Element-wise `∞−norm consistency: ‖B̂ − B∗‖max = O(

√
log p/n)

Theorem 2:

Consider the vector of injected flows whose 4kth moments are bounded, if the number of

samples n = Ω(d2p1/k), then with high probability, the estimator satisfies the same properties

as in Theorem 1.

Novelty

Figure 3. Stylistic visualization of `1−MLE vs GLASSO+2HR. The GLASSO+2HR estimates Fig(b) and eliminates the

2-hop neighbours(spurious edges denoted by dashed lines) via thresholding, while the `1−regularized MLE

estimates the structure directly.

GLASSO+SR (naive baseline) GLASSO+2HR (Hop Refinement) `1−regularized MLE

• If ΣX is diagonal, B̂ =
√

Θ̂GL Identify support of B∗ when Θ̂GL ≤ −τ Estimates B∗ directly
• ΣX should be diagonal Cycle length > 3 No structural assumptions

• n = O(d4 log p) n = O(d4 log p) n = O(d2 log p)

Experiments

Figure 4. Graphs used in experiments. (a) Chain graph with maximum degree d = 2. (b) Grid graph d = 4. (c) IEEE 33

bus (node) distribution network with additional loops (shown in dashed lines). (d) Sparsity of B∗ associated with the

IEEE 33 bus network. (d) Sparsity of (B∗)2
. Notice that (B∗)2

is denser relative to B∗. Consequently, GLASSO+2HR

needs more samples than `1−regularized MLE to recover the support.

Figure 5. Empirical probability of success of various estimators versus the sample size n, for chain graph (left), grid

graph (middle), and IEEE 33 bus network (right). For IEEE 33 bus network, we compare `1−regularized MLE with

GLASSO+SR and GLASSO+2HR.

Conclusion

We propose a novel `1−regularized MLE for B∗ from samples of Y . Our first result shows

that, the `1−regularized MLE is convex in B and it has a unique minimum even in the

high-dimensional regime (n � p).

Under a new mutual incoherence condition and a hessian regularity assumption, we provide

sample complexity guarantees for exact support recovery and norm consistency in the high

dimensional regime.

We complement our theoretical results with experimental results both on the synthetic data

sets and data from a benchmark power distribution system. Our experiments demonstrate

the clear benefit of the proposed estimator over baseline and competing methods.
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