

Evaluating Latent Space Robustness and Uncertainty of EEG-ML Models under Realistic Distribution Shifts

Neeraj Wagh¹, Jionghao Wei², Samarth Rawal³, Brent Berry⁴, Yogatheesan Varatharajah^{1,2,4}

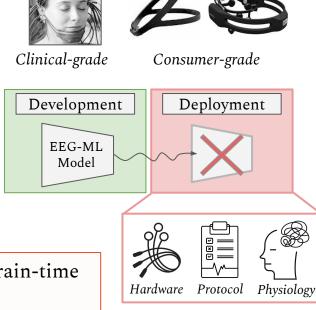
¹ Dept. of Bioengineering, University of Illinois, Urbana, IL, USA
² Dept. of Electrical & Computer Engineering, University of Illinois, Urbana, IL, USA
³ Carle Illinois College of Medicine, University of Illinois, Urbana, IL, USA
⁴ Dept. of Neurology, Mayo Clinic, Rochester, MN, USA

NeurIPS Conference, 2022

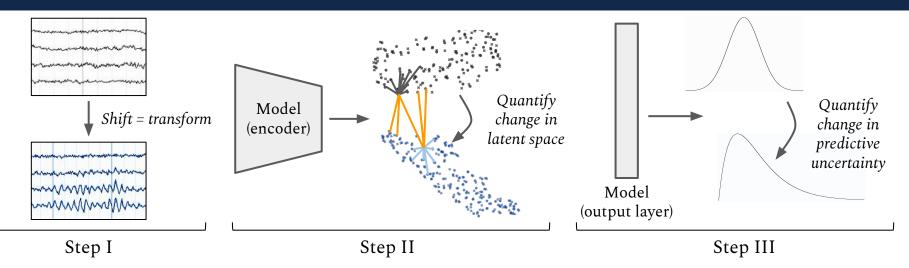
Real-world Robustness of EEG-ML Models

- EEG is a versatile tool for recording brain activity Ο
 - Wide range of applications based on EEG and ML
- EEG-ML models fail in deployment¹
 - Curated datasets, complex real-world shifts Ο
- Can we predict deployment failures at train-time?
 - Existing approaches require data from target settings² Ο
- Contribution: Approach to predict deployment failures at train-time
 - Domain knowledge to model realistic EEG shifts Ο
 - Develop robustness measures to assess impact of shifts 0
 - Train-time analysis predicts in-the-wild performance Ο

1. Xu, Lichao, et al. "Cross-dataset variability problem in EEG decoding with deep learning." Frontiers in human neuroscience 14 (2020): 103. 2. Saria, Suchi, and Adarsh Subbaswamy. "Tutorial: safe and reliable machine learning." arXiv preprint arXiv:1904.07204 (2019).



Evaluating Robustness to Realistic Distribution Shifts

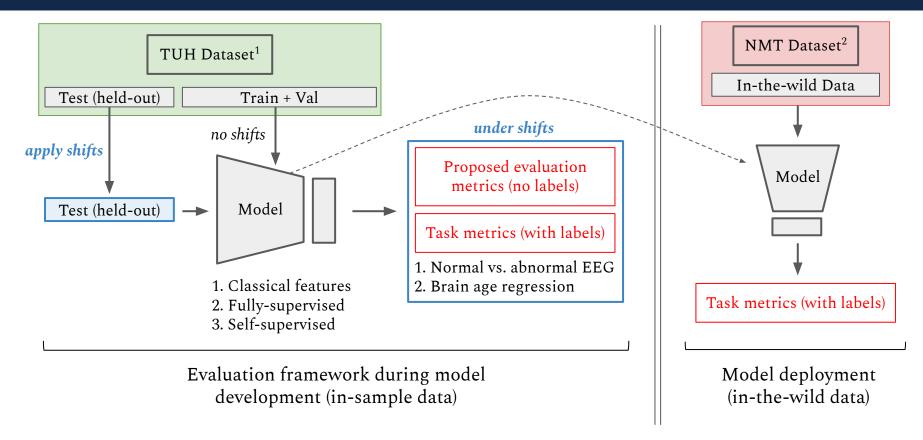


- Step I: Capture realistic EEG shifts as data transforms
 - Domain knowledge \rightarrow effect of shift¹ \rightarrow raw data transform
- Step II: Quantify change in the encoder's latent space
 - Neighboring points \rightarrow graph² \rightarrow graph-based measure
- Step III: Quantify change in predictive uncertainty at output
 - Monte Carlo dropout³-based measure

Kappenman, Emily S., and Steven J. Luck. "The effects of electrode impedance on data quality and statistical significance in ERP recordings." Psychophysiology 47.5 (2010): 888-904.
Poklukar, Petra, et al. "Delaunav component analysis for evaluation of data representations." arXiv preprint arXiv:2202.06866 (2022).
Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning." International Conference on Machine Learning. PMLR, 2016.

BIOENGINEERING

Experimental Setup: In-sample and Out-of-sample Evaluations

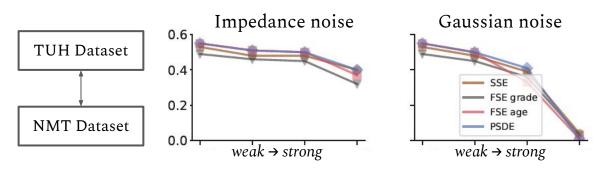


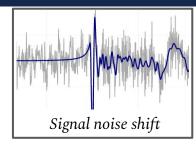
1. Obeid, Ivad, and Joseph Picone. "The temple university hospital EEG data corpus." Frontiers in neuroscience 10 (2016): 196.

2. Khan, Hassan Ageel, et al. "The NMT Scalp EEG Dataset" Frontiers in Neuroscience 15 (2021).

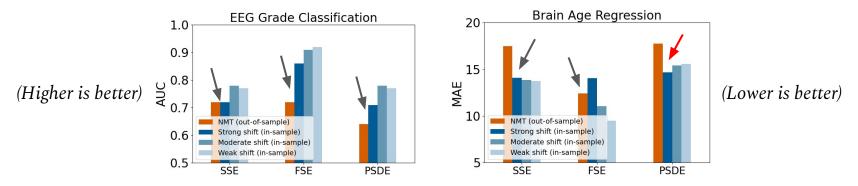
Strong Shifts During Development Predict Out-of-sample Performance

• Latent space robustness measure





• Task performance



• Impact of strong shifts in development predicts in-the-wild performance

Future Directions

- Modeling additional EEG shifts
 - Physiological
 - Clinical protocols
- Extend approach to other healthcare data modalities
 - Imaging
 - Text
- How can we mitigate changes due to realistic shifts?
 - Training with shifts
 - Adversarial training
- Community benchmark for robustness
 - Establish robustness profiles of popular models

