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Real-world Robustness of EEG-ML Models

e EEG is a versatile tool for recording brain activity
o  Wide range of applications based on EEG and ML

e EEG-ML models fail in deployment!

o  Curated datasets, complex real-world shifts

e Can we predict deployment failures at train-time?
O  Existing approaches require data from target settings?

Clinical-grade

Consumer-grade

| Development |

| Deployment |

o  Domain knowledge to model realistic EEG shifts
o Develop robustness measures to assess impact of shifts
o  Train-time analysis predicts in-the-wild performance

e Contribution: Approach to predict deployment failures at train-time

1. Xu, Lichao, et al. "Cross-dataset variability problem in EEG decoding with deep learning.” Frontiers in human neuroscience 14 (2020): 103.
2. Saria, Suchi, and Adarsh Subbaswamy. "Tutorial: safe and reliable machine learning." arXiv preprint arXiv:1904.07204 (2019).
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Evaluating Robustness to Realistic Distribution Shifts
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e Step I: Capture realistic EEG shifts as data transforms
o  Domain knowledge > effect of shift! > raw data transform

e Step II: Quantify change in the encoder’s latent space
o  Neighboring points - graph? » graph-based measure

e Step III: Quantify change in predictive uncertainty at output
o  Monte Carlo dropout3-based measure
1. Kappenman, Emily S., and Steven J. Luck. "The effects of electrode impedance on data quality and statistical significance in ERP recordings.” Psychophysiology 47.5 (2010): 888-904.

2. Poklukar, Petra, et al. "Delaunay component analysis for evaluation of data representations.” arXiv preprint arXiv:2202.06866 (2022).
3. Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning." International Conference on Machine Learning. PMLR, 2016.



Experimental Setup: In-sample and Out-of-sample Evaluations
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1. Normal vs. abnormal EEG
1. Classical features 2. Brain age regression

2. Fully-supervised
3. Self-supervised

Task metrics (with labels)

Evaluation framework during model
development (in-sample data)

1. Obeid, Iyad, and Joseph Picone. "The temple university hospital EEG data corpus.” Frontiers in neuroscience 10 (2016): 196.
2. Khan, Hassan Ageel, et al. "The NMT Scalp EEG Dataset" Frontiers in Neuroscience 15 (2021).

Model deployment
(in-the-wild data)




Strong Shifts During Development Predict Out-of-sample Performance

® Latent Space robustness measure
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e Impact of strong shifts in development predicts in-the-wild performance



Future Directions

e Modeling additional EEG shifts
o  Physiological
o  Clinical protocols

e Extend approach to other healthcare data modalities
o Imaging
o Text

e How can we mitigate changes due to realistic shifts?

o  Training with shifts Code & pre-print
o  Adversarial training E "ﬁ- = E
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o  Establish robustness profiles of popular models :F; . "'_1 " ot



