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Motivation &
Background



Training large networks is challenging.

Large neural networks require: Critical to resource constrained environments

memory & computations power consumption embedded systems real-time tasks
e.g., mobile devices e.g., autonomous car

Figure from http://www.robots.ox.ac.uk/~namhoon/doc/slides-compression-ssp.pdf
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Motivation

* Studying small-sized networks is still appealing.

* Application: on-device Al, self-driving cars, etc.
* Candidate strategy: Pruning, Quantization, reducing the width, etc.

* In this work, we focus on reducing the width (training narrow nets).



Why do narrow nets performs badly?

* However, reducing the network width often leads to worse
performance.

* What is the possible cause?
* worse generalization power? (how the network performs on test sets)

» weaker expressivity? (how large a dataset that a network can learn)

* worse ? (how effective a network can be optimized)

* We discuss the expressivity and for narrow nets.



We ask two questions:

For the 1-hidden-layer network with width m < sample size n:

* (Q1): Can a narrow network have the strong expressivity to memorize
n data samples?
* When m > n: we naturally agree it is true.
* When m < n: not clear.

e (Q2): If so, can a gradient-based method find a (near)
solution?
e Cavate: bad basins (e.g. [Swirszcz et al’16, Zhou et al/17 ]),
e GD iterates are hard to control.



Related works

* Expressivity: There exists a network to fit the data set (e.g. [Telgarsky’16, Zhang
et al’17, Park et al.20])

- [Shalev et al’17] points out: these specially constructed networks CANNOT be found by
gradient methods.

only for wide networks with width O(ploy(n))
(e.g. [Allen-Zhu et al./19,Du et al.’19,Chizat et al.’18 ]).

* When width m < n: both are open questions.

* We suggest discussing these two topics together.
(Attempted in [Daniely’19, Bubeck et al.’20, Zhou et al21.] But the settings & results are
different.)



Our results (informal)

For 1-hidden-layer nets with width m > %n (n: sample size, d: input
dimension) : (when d > 2, our results cover m < n.)

* (A1) Expressivity: there exists a global-min with zero empirical loss,
i.e. the network can memorize n samples.

we propose a constrained problem where



Expressivity Analysis



Settings
* Training set: {x;,y;}"_,

* 1-hidden-layer networks:

f(x;0) = ZTZl vjo (w) x;), where § = {w,v}
* The empirical loss:

ming £(0) := 4(f) = %Z?zl (yi — f (@; ‘9))2



Settings

* We consider “Mirrored LeCun’s initialization” as follows.

* Property: the output will be 0. Its benefits are discussed in the paper.



Narrow nets have strong expressivity

2n .
Whenm > Fn: (it coversm < nwhend > 2):

Theorem 1 (1% half, informal):
Consider Mirrored LeCun’s initialization (MLI) 8, = (wg, vg), then for any

small neighborhood around w?, there exists a 8, s.t. £(6)=0.

* the network can memorize n samples.

* There exists at least one global-min near MLI.

* The proof is based on Inverse Function Theorem.



Nice local landscape around the global-min

2n .
Whenm > Fn: (it coversm < nwhend > 2):

Theorem 1 (2nd half, informal):

Around Mirrored LeCun’s initialization (MLI) , there exists a “nice region”
where

* This is the foundation of
 Proof is based on the full-rankness of Jacobian.

* Caveat: GD iterates may leave the “nice region”.



Trainability Analysis



How to find the global-min?

* Theorem 1 tells us: Around the initialization MLI:
* a global-min with zero loss exists.
* There is no bad local-min or saddles.

* Main idea: we want to keep the iterates around MLI, and search
locally.



For wide nets, local search is natural.

Joias

Wide

* The GD iterates stay near initialization when m = O (ploy(n)).

* This is the key idea in NTK papers (e.g. [Du et al’19])



When width m < n: we cannot control the
parameter movement

Narrow

* [t may hit a stationary point with singular Jacobian (with high loss).
* The traditional NTK story fails.



How to do local search for narrow nets?

* An intuitive approach is to add constraint.
Narrow (our regime)

* 2 issues:
* Perhaps there is no global-min inside the red ball.
e Perhaps the algorithms will stop on the boundary (with large loss.)



How to do local search for narrow nets?

* An intuitive approach is to add constraint.
Narrow (our regime)

e 2 issues:

. By Thm1, a global-min
exists in the red ball!

e Perhaps the algorithms will stop on the boundary (with large loss.)



How to fix issue 27?

* We only need to change the output layer a bit (one line of code):

* Original form:

f(xiw;v) =300 vjo (w] ;)

e New form:

flasw,v) =) 2, v; (U(UJJT )—a(w;ﬂ%a:)).

* That is: we keep the pairwise pattern of v.



Trainability results

2n .
Whenm = Fn: (it covers m < nwhend > 2):

Theorem 2 (informal): With the new proposed output layer and MLI, we propose a
constrained problem which keeps ||w — w°||r < e

Narrow (our regime)

e, f(w*,v*) = 0(62), where €is the constraint size.
* NO bad local-min on the boundary! (Proof is based on local geometry analysis)



Experiments



Experiments

* We propose a new training method:

. I\/Iirr;)red initialization + pairwise output layer + constrained problem (with
PGD).

* Empirical performance of our method:
* Training: our method can memorize random CIFAR-10.
e Test: our method generalizes well on R-ImageNet.

* Ablation studies:
* The narrow nets are hard to train using unconstrained SGD.
* |t is necessary to change the algorithm.



Training performance on random data

Table 3: Results on the random-labeled CIFAR-10

Width Epoch Activation Trainacc Testacc
1024 1000 ReLU 0.9931 0.1011
2048 1000 ReLU 0.9984 0.1022
4096 1000 ReLU 0.9998 0.0962
1024 1000  Tanh 0.9872 0.0991
2048 1000  Tanh 0.9927 0.1024
4096 1000  Tanh 0.9938 0.0962

e Using our training method: 1-hidden-layer nets can memorize random-

labeled CIFAR-10



How about generalization?
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* On Restricted- ImageNet our training regime (with PGD) outperforms SGD-
based training in ‘test acc’, especially in narrow cases.

* More experiments on MNIST, CIFAR10, CIFAR100 can be seen in the paper.



Ablation studies on synthetic data: training error
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 Unconstrained GD fails for narrow nets.

* Directly adding constraint will not help:
We need Mirrored LeCun’s initialization + changes of the output layer.



Conclusions



Conclusion

We shed new light on narrow nets training

For 1-hidden-layer nets with width m > — (when d > 2, our results cover
m<n.):

* (A1) ExEresswlty there exists a global-min with zero empirical loss, i.e. the
network can memorize n samples.

we propose a constrained problem where

* Empirically: our training method promotes the training & test performance



