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Motivation & 
Background



Training large networks is challenging.

Figure from http://www.robots.ox.ac.uk/~namhoon/doc/slides-compression-ssp.pdf
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Motivation

• Studying small-sized networks is still appealing.

• Application: on-device AI, self-driving cars, etc.

• Candidate strategy: Pruning, Quantization, reducing the width, etc.

• In this work, we focus on reducing the width (training narrow nets).



Why do narrow nets performs badly?

• However, reducing the network width often leads to worse
performance. 
• What is the possible cause?
• worse generalization power? (how the network performs on test sets)

• weaker expressivity? (how large a dataset that a network can learn)

• worse trainability ? (how effective a network can be optimized)

• We discuss the expressivity and trainability for narrow nets.



We ask two questions:

For the 1-hidden-layer network with width 𝑚 < sample size 𝑛:
• (Q1): Can a narrow network have the strong expressivity to memorize 
𝑛 data samples?
• When 𝑚 > 𝑛: we naturally agree it is true.  
• When 𝑚 < 𝑛: not clear.

• (Q2): If so, can a gradient-based method find a (near) globally 
optimal solution? 
• Cavate: bad basins (e.g. [Swirszcz et al.’16, Zhou et al.’17 ]), 
• GD iterates are hard to control.



Related works

• Expressivity: There exists a network to fit the data set (e.g. [Telgarsky’16, Zhang 
et al.’17, Park et al.’20])
• [Shalev et al.’17] points out: these specially constructed networks CANNOT be found by 

gradient methods.

• Trainability: only for wide networks with width 𝑂(ploy(𝑛))
(e.g. [Allen-Zhu et al.’19,Du et al.’19,Chizat et al.’18 ]).

• When width 𝒎 < 𝒏: both are open questions.
• We suggest discussing these two topics together.

(Attempted in [Daniely’19, Bubeck et al.’20, Zhou et al.’21.] But the settings & results are 
different.)



Our results (informal)

For 1-hidden-layer nets with width 𝑚 ≥ !"
#

(𝑛: sample size, 𝑑: input 
dimension) :  (when 𝑑 > 2, our results cover 𝑚 < 𝑛.)

• (A1) Expressivity: there exists a global-min with zero empirical loss, 
i.e. the network can memorize 𝑛 samples. 

• (A2) Trainability: we propose a constrained problem where every KKT 
point has small loss.



Expressivity Analysis



Settings

• Training set:

• 1-hidden-layer networks:

• The empirical loss: 



Settings

• We consider “Mirrored LeCun’s initialization” as follows.

• Property: the output will be 0. Its benefits are discussed in the paper.



Narrow nets have strong expressivity

When 𝑚 ≥ !"
#
: (it covers 𝑚 < 𝑛 when 𝑑 > 2):

Theorem 1 (1st half, informal):   
Consider Mirrored LeCun’s initialization (MLI) 𝜃$ = (𝑤$, 𝑣$), then for any

small neighborhood around 𝑤$, there exists a 7𝜃, s.t. ℓ( 7𝜃)=0.

• the network can memorize 𝑛 samples.

• There exists at least one global-min near MLI.

• The proof is based on Inverse Function Theorem. 



Nice local landscape around the global-min
When 𝑚 ≥ !"

#
: (it covers 𝑚 < 𝑛 when 𝑑 > 2):

Theorem 1 (2nd half, informal): 
Around Mirrored LeCun’s initialization (MLI) , there exists a “nice region” 
where every stationary point is a global-min.

• This is the foundation of “trainability”
• Proof is based on the full-rankness of Jacobian.
• Caveat: GD iterates may leave the “nice region”.



Trainability Analysis



How to find the global-min?

• Theorem 1 tells us:  Around the initialization MLI:
• a global-min with zero loss exists.
• There is no bad local-min or saddles. 

• Main idea: we want to keep the iterates around MLI, and search 
locally.



For wide nets, local search is natural.

• The GD iterates stay near initialization when 𝑚 = 𝑂(ploy(𝑛)).
• This is the key idea in NTK papers (e.g. [Du et al.’19])



When width 𝑚 < 𝑛: we cannot control the 
parameter movement

• It may hit a stationary point with singular Jacobian (with high loss).
• The traditional NTK story fails.



How to do local search for narrow nets?

• An intuitive approach is to add constraint.

• 2 issues:
• Perhaps there is no global-min inside the red ball.
• Perhaps the algorithms will stop on the boundary (with large loss.)



How to do local search for narrow nets?

• An intuitive approach is to add constraint.

• 2 issues:
• Perhaps there is no global-min inside the red ball.  By Thm1, a global-min 

exists in the red ball!
• Perhaps the algorithms will stop on the boundary (with large loss.)



How to fix issue 2?

• We only need to change the output layer a bit (one line of code):
• Original form:  

• New form: 

• That is: we keep the pairwise pattern of 𝑣.



Trainability results

When 𝑚 ≥ !"
# : (it covers 𝑚 < 𝑛 when 𝑑 > 2):

Theorem 2 (informal):  With the new proposed output layer and MLI, we propose a 
constrained problem which keeps

Then all KKT points are near-global optimal.
• i.e.,                                          , where     is the constraint size.
• NO bad local-min on the boundary!  (Proof is based on local geometry analysis)



Experiments



Experiments

• We propose a new training method:
• Mirrored initialization + pairwise output layer + constrained problem (with 

PGD).

• Empirical performance of our method:
• Training: our method can memorize random CIFAR-10.
• Test: our method generalizes well on R-ImageNet.

• Ablation studies:
• The narrow nets are hard to train using unconstrained SGD. 
• It is necessary to change the algorithm.



Training performance on random data

• Using our training method: 1-hidden-layer nets can memorize random-
labeled CIFAR-10



How about generalization?

• On Restricted-ImageNet, our training regime (with PGD) outperforms SGD-
based training in ‘test acc’, especially in narrow cases. 
• More experiments on MNIST, CIFAR10, CIFAR100 can be seen in the paper.



Ablation studies on synthetic data: training error

• Unconstrained GD fails for narrow nets.
• Directly adding constraint will not help:

We need Mirrored LeCun’s initialization + changes of the output layer.

GD&PGD+Mirrored init+parwised output layer GD&PGD



Conclusions



Conclusion

We shed new light on narrow nets training.
For 1-hidden-layer nets with width 𝑚 ≥ !"

#
(when 𝑑 > 2, our results cover 

𝑚 < 𝑛.) :

• (A1) Expressivity: there exists a global-min with zero empirical loss, i.e. the 
network can memorize 𝑛 samples. 

• (A2) Trainability: we propose a constrained problem where every KKT point 
has small loss.

• Empirically: our training method promotes the training & test performance


