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Spike -> Current -> Membrane Potential

If membrane potential reaches threshold, 
generate spike and reset

Event-driven energy-efficient computation 
on neuromorphic hardware



SNN Background

Membrane potential:

Current:

Discrete formulation:



SNN Background

Membrane potential:

Current:

Discrete formulation:

Complex neuron model
Non-differentiable
Hard to train



Previous Training Framework

Kim J., Kim K., and Kim J. Unifying activation-and timing-based learning rules for spiking neural networks. NeurIPS, 2020.
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Previous Training Framework

Activation-based with surrogate derivative Timing-based with assumption 
of the existence of spikes

Wu Y., Deng L., Li G., et al. Spatio-temporal backpropagation for training high-performance spiking neural networks. Frontiers in Neuroscience, 2018. 
Zhang W. and Li P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. NeurIPS, 2020.
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Previous Training Framework
BPTT-like; Activation-based / Timing-based

Drawback for BPTT-like methods:
• Large memory costs;
• Biologically implausible;
• Accumulated approximation error (activation-based);
• “Dead neuron” problem – no spike, no learning (timing-based).

New training methods other than backpropagation along the 
computational graph?



Network Structure

Feedforward             vs.                Feedback

Kar K., Kubilius J., Schmidt K., et al. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience, 2019.
Kubilius J., Schrimpf M., Kar K., et al. Brain-like object recognition with high-performing shallow recurrent ANNs. NeurIPS, 2019.

We consider feedback spiking 
neural networks (FSNN)

Feedback (recurrent) 
circuits are critical to 

human’s vision system

SNN naturally compute 
for multiple time steps –
avoid uneconomical costs

ANN with recurrence: 
Shallow , Higher 

functional fidelity of 
human brains



Equilibrium of Neural Networks
Early energy-based models

The dynamics of feedback neural networks minimize an energy function

Converge to a minimum of the energy

Training: recurrent backpropagation, equilibrium propagation

Deep equilibrium models

Express the entire deep network as solving an implicit fixed-point equilibrium point

Forward: root-finding methods

Backward: implicit differentiation on the equation

Almeida LB. A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. ICNN, 1987.
Scellier B., and Bengio Y. Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Frontiers in Computational Neuroscience, 2017
Bai S., Kolter J. Z., and Koltun V. Deep equilibrium models. NeurIPS, 2019.
Bai S., Koltun V., and Kolter J. Z. Multiscale deep equilibrium models. NeurIPS, 2020.



Method Overview

1. Derive the equilibrium states with a fixed-point equation for FSNN computation

2. View the forward computation of FSNN as solving an implicit equation for the 
equilibrium state; apply implicit differentiation to calculate gradients

• Backward computation is decoupled from the forward computational graph

• Avoid common SNN training problems including non-differentiability and large 
memory costs

• More biologically plausible than BPTT-like methods



Equilibrium States of FSNN
Continuous View – IF model

First consider a group of spiking neurons with feedback connections.

Through integration, we have:

Define average firing rates: average inputs:



Equilibrium States of FSNN
Continuous View – IF model

Neurons will not spike when accumulated 𝒖𝑖 𝑡 is negative

𝒖𝑖 𝑡 can be divided as 𝒖𝑖 𝑡 = 𝒖𝑖
− 𝑡 + 𝒖𝑖

+ 𝑡
𝟏

𝒕
𝒖𝑖
− 𝑡 = min 0,
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𝑡
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𝑖
is the remaining negative term

𝒖𝑖
+ 𝑡 is a bounded remaining positive term

Equilibrium State



Equilibrium States of FSNN
Discrete View – IF model

By summation, we have:

Define average firing rates: average inputs:



Equilibrium States of FSNN
Discrete View – IF model

Differently, there could be at most t spikes during t discrete time steps

𝒖𝑖 𝑡 = 𝒖𝑖
− 𝑡 + 𝒖𝑖

+ 𝑡

𝒖𝑖
− 𝑡 is the remaining negative term or the exceeded positive term

𝒖𝑖
+ 𝑡 is a bounded remaining positive term

Equilibrium State



Equilibrium States of FSNN
Continuous View – LIF model

Define weighted average firing rates:

weighted average inputs:

is the response kernel of the LIF model



Equilibrium States of FSNN
Continuous View – LIF model

𝒖𝑖 𝑡 can be similarly divided as 𝒖𝑖 𝑡 = 𝒖𝑖
− 𝑡 + 𝒖𝑖

+ 𝑡

Random error caused by                    is not eliminated with time

An approximate solver for the equilibrium with bounded random errors

The same equation as the IF model



Equilibrium States of FSNN
Discrete View – LIF model

Define weighted average firing rates:

weighted average inputs:

The same equation as the IF model



Implicit Differentiation

Consider the fixed-point equation

Consider the objective function on the equilibrium state

Gradients can be calculated by

The inverse Jacobian can be solved by solving

The implicit differentiation satisfies

Bai S., Kolter J. Z., and Koltun V. Deep equilibrium models. NeurIPS, 2019.
Bai S., Koltun V., and Kolter J. Z. Multiscale deep equilibrium models. NeurIPS, 2020.



Loss and Training Pipeline

1. Simulate SNN  by T time steps. Treat the (weighted) average firing rates          as 
approximately following the fixed-point equation of the equilibrium state

2. Configure a readout layer after these spiking neurons with neurons that do not spike or 
reset, the output is equivalent as                    . . Loss 𝐿 𝑎 𝑇 = ℒ 𝑜, 𝑦 .

3. Calculate gradients based on implicit differentiation on the equilibrium state

3.1 Solve                                           by root-finding methods

3.2 Calculate gradients for parameters

4. Optimize parameters by SGD or its variants



Biological Plausibility
Consider

Let

The gradient is

We can solve by

• computing another equilibrium for these neurons by the inverse directions of connections
• M is a mask matrix based on the firing condition in the forward stage, inhibition mechanisms



Biological Plausibility
Two-stage equilibrium computation

Then

Connection to the locally updated Hebbian learning rule

Difference:
• We consider average firing rates
• We use two-stage and temporal information
• There is a mask possibly based on inhibition mechanisms

More biologically plausible than BPTT-like methods; still other issues



Incorporating Multi-layer Structure
Enhance the non-linearity of the fixed-point equilibrium equation

LIF model

IF model



Implementation Details

Restriction on Spectral Norm

Modified Batch Normalization
BN with fixed statistics is a simple linear transformation;

Fix the statistics during forward computation;

Update the statistics during backward calculation.

𝛼 ∈ −𝑐, 𝑐



Experiments

Simple Static Inputs

• Relatively small time steps
• Fewer neurons and params
• LIF slightly better than IF

• LIF leverages temporal
information by encoding 
weighted average firing rates



Experiments

Neuromorphic Inputs

• Relatively small time steps
• Fewer neurons and params
• LIF slightly better than IF

• LIF leverages temporal
information by encoding 
weighted average firing rates



Complex Static Inputs

• Relatively small time steps
• Fewer neurons and params
• Superior results

Experiments



Complex Static Inputs

• Relatively small time steps
• Fewer neurons and params
• Superior results

Experiments



Convergence to Equilibrium

Experiments



Training Memory Costs                                     Firing Sparsity

Experiments



Conclusion

Novel training method based on equilibrium states and implicit differentiation

• The forward computation of FSNNs can be interpreted as solving a fixed-point equation
• The backward calculation is decoupled from the forward computational graph
• Avoid common SNN training problems including non-differentiability and large memory costs
• Discussion of biological plausibility and connection to the Hebbian learning rule

Superior performance with fewer neurons and parameters in a small number of time 
steps, and spikes are sparse.

Consideration of neuromorphic learning and biological issues

Feedback network structures

Large-scale datasets

……

Future work



https://github.com/pkuxmq/IDE-FSNN

Paper

Thanks for listening!

https://arxiv.org/abs/2109.14247

GitHub

https://github.com/pkuxmq/IDE-FSNN
https://arxiv.org/abs/2109.14247

