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SNN Background

Spike -> Current -> Membrane Potential

|| If membrane potential reaches threshold,
generate spike and reset

Event-driven energy-efficient computation
on neuromorphic hardware




SNN Background

lu
IF: %:R-I{tj: u < Vin
Membrane potential: du
LIF: Tm—r = — (U — Upest) + B - (1), u < Vig

Current: Li(t) = > wijsi(t) + b

(i [t +0.5] = Muit] + Y wijs;[t] + b,

Discrete formulation: ¢ S o [LT>0
sift + 1] = H(u; [t + 0.5] — Vi), @) =oz<o

(wi[t + 1] = u; [t +0.5] — Vigs;[t + 1],




SNN Background

du
IF: d—?:ﬂ-f{tj: u < Vin
Membrane potential: .du
LIF: Tm— = —(u — Upest) + B - I(1), u < Vip

Complex neuron model

Current: Li(t) = > wijsi(t) + b Non-differentiable
Hard to train

f

w; [t + 0.5] = Aw;[t] + Z w;;s;[t] + b,

Discrete formulation: < ’ C(1Lz>0
si[t + 1] = H(u; [t + 0.5] — Vi), H(z) =

(wilt + 1] = u; [t +0.5] — Vipsi[t + 1],



Previous Training Framework
BPTT-like; Activation-based / Timing-based
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Time step Time step Time step
Activation-based Timing-based
Forward computational graph Backpropagation along computational graphs

Kim J., Kim K., and Kim J. Unifying activation-and timing-based learning rules for spiking neural networks. NeurlPS, 2020.



Previous Training Framework
BPTT-like; Activation-based / Timing-based
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Activation-based with surrogate derivative Timing-based with assumption
of the existence of spikes

Wu Y., Deng L., Li G., et al. Spatio-temporal backpropagation for training high-performance spiking neural networks. Frontiers in Neuroscience, 2018.
Zhang W. and Li P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. NeurlIPS, 2020.



Previous Training Framework
BPTT-like; Activation-based / Timing-based

Drawback for BPTT-like methods:

* Large memory costs;

* Biologically implausible;

 Accumulated approximation error (activation-based);

 “Dead neuron” problem — no spike, no learning (timing-based).

New training methods other than backpropagation along the
computational graph?



Network Structure

Feedforward VS. Feedback Feedback (recurrent)
o circuits are critical to
Output utput human’s vision system
(0] WO
w ‘.‘ Output f ANN with recurrence:
. wt Shallow , Higher
. Hidden L : '
Hidden Layer N wofr i e functional fidelity of
human brains
N
FY Hidden Layer D F '
F 4 3 SNN naturally compute
Hidden Laver 1 Hidden Layer 1 for multiple time steps —
raden Layet Tnput avoid uneconomical costs
Fl
R 2
Input
Input P We consider feedback spiking

(a) Single-layer (b) Multi-layer neural networks (FSNN)

Kar K., Kubilius J., Schmidt K., et al. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience, 2019.
Kubilius J., Schrimpf M., Kar K., et al. Brain-like object recognition with high-performing shallow recurrent ANNs. NeurlPS, 2019.



Equilibrium of Neural Networks

Early energy-based models
The dynamics of feedback neural networks minimize an energy function
Converge to a minimum of the energy
Training: recurrent backpropagation, equilibrium propagation

Deep equilibrium models
Express the entire deep network as solving an implicit fixed-point equilibrium point
Forward: root-finding methods
Backward: implicit differentiation on the equation

Almeida LB. A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. ICNN, 1987.

Scellier B., and Bengio Y. Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Frontiers in Computational Neuroscience, 2017
Bai S., Kolter J. Z., and Koltun V. Deep equilibrium models. NeurIPS, 2019.

Bai S., Koltun V., and Kolter J. Z. Multiscale deep equilibrium models. NeurlPS, 2020.



Method Overview

1. Derive the equilibrium states with a fixed-point equation for FSNN computation

2. View the forward computation of FSNN as solving an implicit equation for the
equilibrium state; apply implicit differentiation to calculate gradients

* Backward computation is decoupled from the forward computational graph

* Avoid common SNN training problems including non-differentiability and large
memory costs

 More biologically plausible than BPTT-like methods



Equilibrium States of FSNN

Continuous View — IF model

First consider a group of spiking neurons with feedback connections.

% — Wis(t — Atg) + Fx(t) + b — Vips(t)
Define average firing rates: a(t) = % f[f s(7)dT  average inputs: X(t) =
Through integration, we have:
1 u(t)

a(t) =

(t _f“ Wa(t — Aty) + FX(t) + b — f)

{’t h



Equilibrium States of FSNN

Continuous View — IF model

Neurons will not spike when accumulated u,;(t) is negative

A

u;(t) can be divided as u;(t) = u; (t) + u; (t)
%ui_ (t) = min (O, (t_tAtd Wa(t — At,;) + Fx(t) + b) ) is the remaining negative term

i
u; (t) is a bounded remaining positive term

1 [t— At u'(t
a(t) = RelLU | — dwa(t — Aty) +FX(t) +b — ()
If‘th t t
Theorem 1. If the average inputs converge to an equilibrium point X(t) — x*, and there exists
constant ¢ and ~ < 1 such that | ()| < ¢,Vi, t and ||W ||2 < yVin, then the average firing rates of
FSNN with continuous IF model in Eq.@ will converge to an equilibrium point a(t) — a*, which

satisfies the fixed-point equation a* = RelL.U (Vih (Wa* + Fx* + b)) Equilibrium State




Equilibrium States of FSNN

Discrete View — IF model

ut+1| =ult|+ Wslt| + Fx[t| + b — Vips[t + 1]
Define average firing rates: alt] = %Z:Zl s[r] averageinputs: X(t) = Hil Zi:[} x|7]

By summation, we have:

_ 1 t . ut + 1]
1] = Walt] + Fx[t] + b —
alt+1] =3 (1‘.+l alt] + Fxle] + F+1 )



Equilibrium States of FSNN

Discrete View — IF model

Differently, there could be at most t spikes during t discrete time steps

! 2
w;[t] = ui [t] + uj[¢]

u; [t] is the remaining negative term or the exceeded positive term

+

u; [t] is a bounded remaining positive term

1 t T+ 1 L w>1
aft+1 =0 = —Walt| + FX[t| + b — w ,Whereo() =< x, 0<r<1
.

Theorem 2. [f the average inputs converge ro an equilibrium point X[t| — X*, and there exists
constant c and ~ < 1 such that |u [t]| < ¢, Vi, t and ||W ||y < 7Vip, then the average firing rates
of FSNN with discrete IF model in Eq. will converge to an equilibrium poinr alt] — a*, which

satisfies the fixed-point equation a* = o (Wlh (Wa* + Fx* + b)) Equilibrium State



Equilibrium States of FSNN

Continuous View — LIF model

] 1
% = ——u+ Ws(t — Aty) + Fx(t) + b — Vips(?)
art Tm

t—Atg t t
u(t) = W[ r(t — Atg —7)s(7)dT + F/ k(t—7)x(7)dT +th — Vyy f k(t—7)s(7)dT
0 0 0
k(T) = exp(—i) is the response kernel of the LIF model

~ P r(t—7)s(r)dr
Define weighted average firing rates: ~ a(t) = Jo It(f{(t_)f_g d?r
T

weighted average inputs: X(t) = Jo ’*‘t(t”_’r)x(’r)d‘r
fD k(t—7)dr

1 t=Atq k(7)dT u(t)
A(t) = o "OT\NA(t— At)) - Fx(t) +b— — 1
at) Vin ( fg k(7)dT ale “a) )+ )




Equilibrium States of FSNN

Continuous View — LIF model

u;(t) can be similarly divided as u;(t) = u; (t) + u; (t)

ut (1)
Random error caused by ft (r)dr is not eliminated with time
0

An approximate solver for the equilibrium with bounded random errors

Proposition 1. [Ifthe weighted average inputs converge to an equilibrium point X(t) — x*, and there
exists constant c and ~y < 1 such that |[u; (t)| < ¢, Vi, t and ||[W ||z < vVip, then the weighted average
firing rates a(t) of FSNN with continuous LIF model gradually approximate an equilibrium point

(Wa* + Fx* + b))

mathbfa* with bounded random errors, which satisfies a* = RelLU (VL
(]

The same equation as the IF model



Equilibrium States of FSNN

Discrete View — LIF model

ult + 1] = \uft] + Wslt] + Fx[t] + b — Vips[t + 1]

t At_TS[T}

Define weighted average firing rates:  alt] = S
H . . N i _ )\t—’r
weighted average inputs:  X[t] = cs0 At._}im

Proposition 2. [f the weighted average inputs converge to an equilibrium point X[t| — x*, and
there exists constant ¢ and v < 1 such that |u; [t]| < ¢, Vi, t and ||W ||y < ~Vyp, then the weighted
average firing rates alt] of FSNN with discrete LIF model gradually approximate an equilibrium

point a* with bounded random errors, which satisfies a* = o (% (Wa* + Fx* + b)).
th /

The same equation as the IF model



Implicit Differentiation

Consider the fixed-point equation a = fy(a) go(a) = fe(a) — a

Consider the objective function on the equilibrium state L£(a*)

_ 5fe(a*)) da* _ 9fs(a”)
de oo

The implicit differentiation satisfies (I Ja~ — a0

) oL(a*) oL(a*) , 4 dfpla*)
Gradients can be calculated by 20 - [ oa (Jge a*)

v

The inverse Jacobian can be solved by solving (Jgi';

b

. o\ I
as) X + (2522) =0

Bai S., Kolter J. Z., and Koltun V. Deep equilibrium models. NeurlPS, 2019.
Bai S., Koltun V., and Kolter J. Z. Multiscale deep equilibrium models. NeurlPS, 2020.



Loss and Training Pipeline

1. Simulate SNN by T time steps. Treat the (weighted) average firing rates a[7] as
approximately following the fixed-point equation of the equilibrium state

ou o,
- -

2. Configure a readout layer after these spiking neurons with neurons that do not spike or
reset, the output is equivalent as o = W<a[T] . Loss L(a|T]) = L(o,y).

- .

i 3. Calculate gradients based on implicit differentiation on the equilibrium state \i
i 3.1Solve (JZL|ax) x + (wa )) =0 by root-finding methods i
] oL(a*)  aL(a*) , ., . Ofs(a*) !
;\ 3.2 Calculate gradients for parameters 7 = " her a'lar) 75 ;

—————————————————————————————————————————————————————————————————————————————————————————————————



Biological Plausibility

Consider a* = fp(a*,x*) =ReLU (vih (Wa* + Fx* + b))

let m = fi(a*,x*) = H(VL (Wa*+Fx*+b)) = H(a*)
1. >0

, L >

e\ T ~ N1
The gradientis Vo£ = (2£)" = (3f‘*(§9’x )) (I —~ %WT) (2"

~ N1 _ 7 . N ’ 1
Wecansolve 6" = (I— 5 WT)  (5)" by Bl = LWTBk+ 2L g g

e computing another equilibrium for these neurons by the inverse directions of connections
* M is a mask matrix based on the firing condition in the forward stage, inhibition mechanisms




Biological Plausibility

Two-stage equilibrium computation

Then Vwi = (LMp*a'”, Vel = L Ma*x*T

Vw, L= v ?1133* i VE, ﬁ— mP* L

Connection to the locally updated Hebbian learning rule Aw; ; o< @;x;

Difference:

 We consider average firing rates
 We use two-stage and temporal information
 There is a mask possibly based on inhibition mechanisms

More biologically plausible than BPTT-like methods; still other issues



Incorporating Multi-layer Structure

Enhance the non-linearity of the fixed-point equilibrium equation

IF model Output

Theorem 3. If the average mpurs converge to an equilibrium point X[t] — x* and there exists

constant ¢ and v < 1 such that \u t| < e, Vi, 1t and |[WE|2||[FN ||z -- - | < AV, then the WO‘
average fmne mres of multi-layer FSNN with d:sc‘wre ]Fmode/ will conver Q(’ m ethbmnu pozm‘s Output

[t — al”, which satisfy the fixed-point equations a'™ = f; (fN o---0 fo(al ) ) and al 1" ) Hidden Layer w1l
firr(@”), where fy(a,x) = o (VH (Wha+ Fix + bl)) Jii(a) =0 ( 7 (F'*la le))- w f W

LIF model

FN
Hidden Layer D t

Proposition 3. [f the weighted average inputs umveree to an equilibrium point X[t] — x*, and F f

there exists constant ¢ and v < 1 such that |ul [ H < ¢ Vi, l.t and |[W2||FY]2 - HF2H2 < Hidden Layer 1
ﬁltf then the weighted memge’ firing rates a [] of multi- layer FSNN with discrete LIF Input

model gradually approximate equilibrium points al™ with bounded random errors, which F 1'

satisfy a 1* fl(fNo-..on(al*)_- *) and altlt = le(aH), where fi(a.x) =
(Vth (Wl F1X+b1)) gfl—l—l(a) :O-(V_: (FH—l —'—bH_l))_

Input

(a) Single-layer (b) Multi-layer
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Implementation Details

———————————————————————————————————————————————————————————————————————————————————————————————

———————————————————————————————————————————————————————————————————————————————————————————————

Modified Batch Normalization
BN with fixed statistics is a simple linear transformation;
Fix the statistics during forward computation;
Update the statistics during backward calculation.

______________________________________________________________________________________________

-



Simple Static Inputs

Relatively small time steps
Fewer neurons and params
LIF slightly better than IF

LIF leverages temporal
information by encoding
weighted average firing rates

Experiments

MNIST

Method Network structure ~ Time steps Mean+S5td Best Neurons Params

BP [21] 20C5-P2-50C5-P2-200  >200 / 99.31% 33K 518K
STBP [41] 15C5-P2-40C5-P2-300 30 / 99.42% 26K 607K

SLAYER [38] 12C5-P2-64C5-P2 300 99.36%£0.05% 99.41% 28K 51K
HMZ2BP [14] 15C5-P2-40C5-P2-300 400 99.42%=+0.11% 99.49% 26K 607K
ST-RSBP [45] 15C5-P2-40C5-P2-300 400 99.57 % £0.04% 99.62% 26K 607K
TSSL-BP [46] 15C5-P2-40C5-P2-300 5 99.50%=+0.02% 99.53% 26K 607K
IDE-IF (ours) 64C5s (F64C3) 30 99.49%£0.04% 99.55% 13K 229K
IDE-LIF (ours) 64C5s (F64C3) 30 99.53%£0.04% 99.59% 13K 229K

Fashion-MNIST

Method Network structure Time steps Mean=Std Best  Neurons Params
ANN [435] 512-512 / / 89.01% 1.8K 670K
HM2BP [45] 400-400 400 / 88.99% 1.6K 478K
TSSL-BP [46] 400-400 5 89.75%=+0.03% 89.80% 1.6K 478K
ST-RSBP [45] 400 (F400) 400 90.00%+0.14% 90.13% 12K 478K
IDE-IF (ours) 400 (F400) 5 90.04% +£0.09% 90.14% 12K 478K
IDE-LIF (ours) 400 (F400) 5 90.07% +£0.10% 90.25% 12K 478K




Neuromorphic Inputs

Relatively small time steps
Fewer neurons and params

LI

F slightly better than IF
LIF leverages temporal
information by encoding
weighted average firing rates

Experiments

Table 2: Performance on N-MNIST. Results are based on 5 runs of experiments.

Method Network structure Time steps Mean=Std Best Neurons Params
HM2BP 400-400 600 98.88%+0.02% 98.88% 3K 1.IM
SLAYER 500-500 300 98.89%+0.06% 98.95% 3K 1.4M
SLAYER 12C5-P2-64C5-P2 300 99.20%+0.02% 99.22% 40K 61K
TSSL-BP 12C5-P2-64C5-P2 30 99.23%+0.05% 99.28% 40K 61K

STBP w/o NeuNorm CNN' 60 / 99.44% 414K 17.3M
IDE-IF (ours) 64C5s (F64C5) 30 99.30%+0.04% 99.35% 21K 291K
64C5s (F64C5) 30 99.42%+0.04% 9947% 21K 291K

IDE-LIF (ours)

' 128C3-128C3-P2-128C3-256C3-P2-1024



Experiments

CIFAR-10
Method Network structure Time steps Mean=+Std Best Neurons Params
Complex Static Inputs ANN-SNN CIFARNet  400-600 / 90.61% 726K  45M
ANN-SNN VGG-16 2500 / 91.55% 311K I5M
ANN-SNN VGG-16 400-600 / 92.26% 318K  40M
° Relatively Sma” time Steps Hybrid Training VGG-16 100 / 91.13% 318K 40M
STBP AlexNet 12 / 85.24% 595K 2IM
[ J
Fewer neurons an d params TSSL-BP AlexNet 5 88.98%+0.27% 89.22% 595K 2IM
« Superior results STBP CIFARNet 12 / 90.53% 726K  45M
TSSL-BP CIFARNet 5 / 91.41% 726K 45M
Surrogate gradient VGG-9 100 / 90.45% 274K  5.9M
ASF-BP VGG-7 400 / 91.35% =>240K >30M
IDE-LIF (ours) AlexNet-F 30 91.74%=+0.09% 91.92% 159K 3.1M
IDE-LIF (ours) AlexNet-F 100 92.03% £0.07% 92.15% 159K 3.7M
IDE-LIF (ours) CIFARNet-F 30 92.08%=+0.14% 92.23% 232K 11.8M
IDE-LIF (ours) CIFARNet-F 100 92.52% +0.17% 92.82% 232K 11.8M

AlexNet [42]: 96C3-256C3-P2-384C3-P2-384C3-256C3-1024-1024
AlexNet-F: 96C3s-256C3-384(C3s-384C3-256C3 (F96C3u)

CIFARNet [42]: 128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512
CIFARNet-F: 128C3s-256C3-512C3s-1024C3-512C3 (F128C3u)

4= L b =~



Experiments

CIFAR-100

. Method Network structure Time steps Mean-+Std Best Neurons Params
Complex Static Inputs P

ANN [37] VGG-16 / / 71.22% 311K I5M

ANN-SNN [37] VGG-16 2500 / 70.77% 311K 15M

° Re|ative| smaII time steps ANN-SNN [8] VGG-16 400-600 / 70.55% 318K 40M
Y P ANN-SNN [44] VGG-* 300 / 71.84% 540K 0.7TM

[ ]

Fewer neurons and params IDE-IF (ours) CIFARNet-F 30 71.56% +0.31% 72.10% 232K 14.8M
 Su perior re5u|t5 IDE-IF (ours) AlexNet-F 100 72.02% +£0.16% 72.23% 159K 5.2M

IDE-IF (ours) CIFARNet-F 100 73.07% +£0.21% 73.43% 232K 14.8M
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Experiments

Convergence to Equilibrium
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Experiments

Training Memory Costs

Method Time steps  Accuracy GPU memory

IDE (ours) 30 91.74%=+0.09% 2.8G

STBP 30 87.18% 11G
IDE (ours) 100 92.03%=+0.07% 2.8G
STBP" 100 / out of memory

(~=36G)

" Our implementation

Firing Sparsity

Layer IDE-IF IDE-LIF STBP-LIF
Layer I  0.0345 0.0166 0.0190
Layer 2  0.0041 0.0039 0.0082
Layer 3  0.0025 0.0024 0.0113
Layer4  0.0008 0.0008 0.0035
Layer 5 0.0399 0.0177 0.0108

Total 0.0119 0.0066 0.0102

* Our implementation



Conclusion

Novel training method based on equilibrium states and implicit differentiation

 The forward computation of FSNNs can be interpreted as solving a fixed-point equation

* The backward calculation is decoupled from the forward computational graph

e Avoid common SNN training problems including non-differentiability and large memory costs
* Discussion of biological plausibility and connection to the Hebbian learning rule

Superior performance with fewer neurons and parameters in a small number of time
steps, and spikes are sparse.

Consideration of neuromorphic learning and biological issues

Future work Feedback network structures

Large-scale datasets



Thanks for listening!

Paper GitHub
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https://arxiv.org/abs/2109.14247 https://github.com/pkuxmaq/IDE-FSNN



https://github.com/pkuxmq/IDE-FSNN
https://arxiv.org/abs/2109.14247

