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Temporally correlated actions

1. Temporally persistent exploration
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Moving out of the valley more easily!
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Motivation: temporal abstraction (TA)

2. Better credit assignment with delayed reward (shorter horizon)

reward propagation (15 steps)
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Take actions at every step
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Take actions only at each abstract step



Open-loop vs. closed-loop repetition

Action repetition: perhaps the simplest temporal abstraction technique.



Open-loop vs. closed-loop repetition

Action repetition: perhaps the simplest temporal abstraction technique.

Key questions: what action to repeat & how long to repeat it?



Open-loop vs. closed-loop repetition

Action repetition: perhaps the simplest temporal abstraction technique.

Key questions: what action to repeat & how long to repeat it?

(a1,K=1)
(a1,K=2)
(a1,K=2)
(a1,K=4)
(a2,K=3)
(a2,K=4)

L L Open-loop methods output an action and its duration at once
[Sharma et al., 2017] [Biedenkapp et al., 2021] [Dabney et al., 2021]
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Open-loop vs. closed-loop repetition

Action repetition: perhaps the simplest temporal abstraction technique.

Key questions: what action to repeat & how long to repeat it?

a1 | L| L | L | L L L Open-loop methods output an action and its duration at once
[Sharma et al., 2017] [Biedenkapp et al., 2021] [Dabney et al., 2021]
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Closed-loop methods decide “act-or-repeat” at every step
- I [Neunert et al., 2020] [Chen et al., 2021]
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Temporally abstract actor-critic (TAAC)

TAAC incorporates closed-loop action repetition into off-policy actor-critic for
continuous control

TAAC'’s two-stage policy

observation candidate action
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A novel compare-through operator for multi-step TD backup
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Policy evaluation

A novel compare-through operator for multi-step TD backup
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Example 1: We use Q(s3,a2) as the target to bootstrap Q(s0,a0) (3-step
TD)
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A novel compare-through operator for multi-step TD backup
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Example 1: We use Q(s3,a2) as the target to bootstrap Q(s0,a0) (3-step
TD)
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Example 2: We use Q(s2,a0) as the target to bootstrap Q(s0,a0) (2-step /2’0
TD)
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Policy improvement

A closed-form solution for the switching policy to speed up policy learning:
sampling two actions by the exponential Q values

507 = e (L) j2) ()7 = e (222 /209
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The actor 7T¢(d|87 a” )is trained similarly as in DDPG [Lilicrap et al., 2016] and SAC
[Haarnoja et al., 2018]: OQ)(s, d>5*(1) (this is a good approximation to the full gradient)
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Tasks

5 categories of 14 continuous control tasks (13 standard; 1 customized)

“velocity”: R3,
“navigation”: R8*3
“prev action”: [—1,1]*

Category Task Gym environment name Observation space Action space
MountainCarContinuous | MountainCarContinuous-v0 | R2 [-1,1]!
SimpleControl | LunarLanderContinuous | LunarLanderContinuous-v2 | R® [-1,1]2
InvertedDoublePendulum | InvertedDoublePendulum-v2 | R!! —1,1]*
Hopper Hopper-v2 R -1,13
Locomotion Ant Ant-v2 R!11 —1,1]8
Walker2d Walker2d-v2 RL7 -1 1]6
HalfCheetah HalfCheetah-v2 ’
. BipedalWalker BipedalWalker-v2 24 4
Terrain BipedalWalkerHardcore | BipedalWalkerHardcore-v2 R [-1,1]
FetchReach FetchReach-v1 R
. . FetchPush FetchPush-v1 4
Manipulation | o, 5 Glide FetchSlide-v1 R?8 [-1.1]
FetchPickAndPlace FetchPickAndPlace-v1
“camera”: RIZ5¥64X3
“radar”; R200x4
“collision”: R**3,
Driving Town01 TownO1 “IMU”: R7,
“goal”: R3,




Experiment results

Comparison methods

SAC [Haarnoja et al., 2018]: flat RL
SAC-Ntd: SAC + Retrace + N-TD
SAC-Nrep: SAC + Fixed action repetition

SAC-Krep: open-loop action repetition

SAC-EZ: SAC with EZ-greedy

SAC-Hybrid: closed-loop action repetition formulation from H-MPO
with SAC backbone

TAAC-1td: TAAC without the compare-through operator
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Exploration behavior analysis

MountainCarContinuous

BipedalWalker
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Action repeating frequency
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Action repeating patterns
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Each column represents the same action

TAAC learns to skip learning to generate new actions at non-critical states,

and save the actor network’s representational power for critical states!
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Demos
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Demo - MountainCarContinuous

/Historical 1D actions

(horizontal thickened parts are repeated actions)
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Demo - BipedalWalker

[Historical 4D actions /Act(1)-or-Repeat(0)?
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Demo - FetchPickAndPlace
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TAAC: Temporally Abstract Actor-Critic for
Continuous Control

Haonan Yu, Wei Xu, and Haichao Zhang

Horizon Robotics
Code: https://qgithub.com/hnyu/taac
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