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Ising Model Selection
Binary Markov random field (MRF) with pairwise potentials

Partition function

Binary spins      s = (si)N−1
i=0

∈ {−1, + 1}N

Pairwise  couplings:       J* = (J*ij )i,j
∈ RN×N

The Joint Distribution 

Ising Model

Wide Applications:  statistical physics, image analysis, social networking, biology, etc. 

G = (𝚅, 𝙴)
𝚅 = {0,1,...,N − 1}

𝙴 = {(i, j) |J*ij ≠ 0}

node set

edge set

2

[Wainwright & Jordan, 2008]

[Nguyen et al., 2017; Aurell & Ekeberg, 2012; BachschmidRomano & Opper, 
2015; Berg, 2017; Bachschmid-Romano & Opper, 2017; Abbara et al., 2020].
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Generate i.i.d. data

𝙴 = ?
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The edge set

Inference Collected  Data

 samplesM

?

Wide Applications:  statistical physics, image analysis, social networking, biology, etc. 
[Nguyen et al., 2017; Aurell & Ekeberg, 2012; BachschmidRomano & Opper, 
2015; Berg, 2017; Bachschmid-Romano & Opper, 2017; Abbara et al., 2020].
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Wide Applications:  statistical physics, image analysis, social networking, biology, etc. 
[Nguyen et al., 2017; Aurell & Ekeberg, 2012; BachschmidRomano & Opper, 
2015; Berg, 2017; Bachschmid-Romano & Opper, 2017; Abbara et al., 2020].

Structure Learning Problem 
(Inverse Ising problem)



Overview and Motivations
Popular Algorithms 

• Mean field methods [Nguyen &Berg, 2012,Nguyen et al., 2017] ; Boltzmann learning [Ackley et al. 1985], etc

• Neighborhood based  Methods 

𝒩̂ (i) = {j | ̂Jij ≠ 0,j ∈ 𝚅∖i}, ∀i ∈ 𝚅𝙴 = {(i, j) |J*ij ≠ 0}
Equivalent 

Recovering full edge set  Recovering neighborhood of each node 

[Ravikumar et al., 2010;Aurell, Erik&Ekeberg 2012;Lokhov et al., 2018;Wu et al., 2019]
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Overview and Motivations
Popular Algorithms 

• Mean field methods [Nguyen &Berg, 2012,Nguyen et al., 2017] ; Boltzmann learning [Ackley et al. 1985], etc

• Neighborhood based  Methods 

-LogR  Estimator ℓ1

Interaction Screening (IS) 

P (si |s∖i, Ji) =
1
Zi

esi ∑j(≠i) Jijsjpseudo-likelihood (PL) ̂J∖i = arg min
Ji

1
M
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∑
μ=1

−log P (s(μ)
i |s(μ)

∖i , Ji)+λ J∖i
1

̂J∖i = arg min
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1
M
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∑
μ=1

e−s(μ)
i ∑j(≠i) Jijs

(μ)
j +λ J∖i

1

𝒩̂ (i) = {j | ̂Jij ≠ 0,j ∈ 𝚅∖i}, ∀i ∈ 𝚅𝙴 = {(i, j) |J*ij ≠ 0}
Equivalent 

Recovering full edge set  Recovering neighborhood of each node 

e−s(μ)
i ∑j(≠i) Jijs

(μ)
jIS objective (ISO)

[Lokhov et al., 2018]

[Ravikumar et al., 2010;Aurell, Erik&Ekeberg 2012;Lokhov et al., 2018;Wu et al., 2019]

[Besag, 1975]

[Lokhov et al., 2018]

[Ravikumar et al., 2010]
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Main Contributions
-Regularized Linear Regression ( -LinR) ℓ1 ℓ1

̂J∖i = arg min
J∖i

1
M

M

∑
μ=1

1
2

s(μ)
i − ∑

j(≠i)

Jijs
(μ)
j

2

+λ J∖i
1 quadratic loss   ℓ(x) =

1
2

(1 − x)2

• One representative example of model misspecification  
• -LinR (LASSO), as one most popular linear estimator, is more efficient than nonlinear onesℓ1

Our main focus

[Tibshirani, 1996]
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Does it work 
for binary data?
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-Regularized Linear Regression ( -LinR) ℓ1 ℓ1

̂J∖i = arg min
J∖i

1
M

M

∑
μ=1

1
2

s(μ)
i − ∑

j(≠i)

Jijs
(μ)
j

2

+λ J∖i
1

• One representative example of model misspecification  
• -LinR (LASSO), as one most popular linear estimator, is more efficient than nonlinear onesℓ1

Our main focus

Main Contributions

• A statistical mechanics analysis of the typical learning performances of -LinR for typical paramagnetic random regular 
(RR) graphs

ℓ1

— An accurate estimate of the typical sample complexity of -LinR: same order  as -LogR!ℓ1 M = 𝒪 (log N) ℓ1

— A sharp quantitative prediction of non-asymptotic (moderate ) performances of -LinR, e.g., precision, recall, RSSM, N ℓ1

• Our analysis method applies to any -regularized M-estimator including -LogR and IS  ℓ1 ℓ1

[Tibshirani, 1996]

10

quadratic loss   ℓ(x) =
1
2

(1 − x)2

Does it work 
for binary data?



Problem Formulation
The -regularized M-estimator 

(  is considered)
ℓ1

s0 -LinRℓ1

-LogRℓ1

IS 

general loss function 

̂J = arg min
J

1
M

M

∑
μ=1

ℓ (s(μ)
0 h(μ)) + λ J

1

Statistical Mechanics Perspective 
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Problem Formulation

Hamiltonian

Boltzmann distribution

The -regularized M-estimator 
(  is considered)

ℓ1
s0 -LinRℓ1

-LogRℓ1

IS 

general loss function 

A Statistical Mechanics System  

̂J = arg min
J

1
M

M

∑
μ=1

ℓ (s(μ)
0 h(μ)) + λ J

1

Statistical Mechanics Perspective 

plays the role of  
quenched disorder

 [Opper & Saad, 2001; Nishimori, 2001;  
Mezard& Montanari, 2009]
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Problem Formulation
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The Boltzmann distribution freezes 
onto the solution  as !̂J β → + ∞

The -regularized M-estimator 
(  is considered)

ℓ1
s0 -LinRℓ1

-LogRℓ1

IS 

general loss function 

A Statistical Mechanics System  

β → + ∞

Self-Averaging

̂J = arg min
J

1
M

M

∑
μ=1

ℓ (s(μ)
0 h(μ)) + λ J

1

Statistical Mechanics Perspective 

Statistical mechanics analysis

plays the role of  
quenched disorder

free energy density 

averaged over the 
disorder, i.e. dataset 

for large N, M
average free energy density 

The key quantity

 [Nishimori, 2001]

 [Opper & Saad, 2001; Nishimori, 2001;  
Mezard& Montanari, 2009]
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Self-Averaging

̂J = arg min
J

1
M

M

∑
μ=1

ℓ (s(μ)
0 h(μ)) + λ J

1

Statistical Mechanics Perspective 

Statistical mechanics analysis

plays the role of  
quenched disorder

free energy density 

averaged over the 
disorder, i.e. dataset 

for large N, M
average free energy density 

The key quantity Difficult to calculate 
and we resort to the  
replica method!

 [Nishimori, 2001]

 [Opper & Saad, 2001; Nishimori, 2001;  
Mezard& Montanari, 2009]
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Replica Method
Basic Idea

Procedure
1.  Compute   for   
2. Take  limit using Laplace/Saddle-point method 
3. Obtain an analytically continuable form w.r.t.  under appropriate ansatz  
    - replica symmetry (RS) is used here (due to convexity of estimator) 
4. Take  limit using the obtained analytically continuable form

n ∈ ℕ
N → ∞

n

n → 0

 [Mézard et al 1987; Opper & Saad, 2001; 
Nishimori, 2001; Mézard

& Montanari, 2009]
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Replica Method
Basic Idea

Procedure

Comments

1.  Compute   for   
2. Take  limit using Laplace/Saddle-point method 
3. Obtain an analytically continuable form w.r.t.  under appropriate ansatz  
    - replica symmetry (RS) is used here (due to convexity of estimator) 
4. Take  limit using the obtained analytically continuable form

n ∈ ℕ
N → ∞

n

n → 0

1. In present case for Ising model selection, the detailed replica computation is still far from trivial 
   - We use an approach based on cavity method 
   - We propose two ansatzs to enable the calculation, which can be (numerically) verified. 

2. Although the replica method is non-rigorous,  our results are supported by experimental results. 

 [Mézard et al 1987; Opper & Saad, 2001; 
Nishimori, 2001; Mézard

& Montanari, 2009]

[Bachschmid-Romano & Opper 2017, Abbara et al., 2020; Meng et al., 2021]

18



Free Energy Result

Equations of state (EOS)

In the case of -LinR estimator ℓ1

 denotes extremization operation over parameters    𝙴𝚡𝚝𝚛
Θ

{ ⋅ } The EOS can be 
efficiently solved 

numerically! 

Result of replica method

ρ(λ) eigenvalue distribution (EVD) of covariance matrix  of Ising 
model without  (available for RR graph)

C\0

s0

Notations Definition

denotes joint expectation with , where   and 
 

s, z z ∼ 𝒩(0,1)
s ∝ es0 ∑j∈Ψ J*j sj

How to solve  ?f
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Equivalent Probabilistic Model of -LinR ℓ1

̂J = arg min
J

1
M

M

∑
μ=1

1
2

s(μ)
i − ∑

j(≠i)

Jijs
(μ)
j

2

+ λ J
1

The estimates of -LinR are decoupledℓ1
Highly coupled  

& 
Difficult to analyze 

Active set

Inactive set

Decoupled (Replica method)

Probabilistic Model of -LinR ℓ1 Statistically equivalent to two scalar estimators ! 

20

−τ

𝚜𝚘𝚏𝚝 (z, τ)

+τ z

τ =
λM

HN

H

K N

−τ

𝚜𝚘𝚏𝚝 (z, τ)

+τ z

τ = λ(1 + χ)

1
1 + (d − 1) tanh2 (K0)

z = tanh(K0)

(a) Equivalent scalar estimator for the active set (b) Equivalent scalar estimator for the inactive set

̂JjJ̄j
mean value

Easy to  
analyze 



High-dimensional Asymptotic Result
：Sample complexity of -LinR ℓ1

Definition 1: An estimator is called model selection consistent if both the associated 
precision and recall satisfy and  as .Precision → 1 Recall → 1 N → ∞

Estimated Results 

Tr
ue

 R
es

ul
ts

 

21



High-dimensional Asymptotic Result

FP <
1

π
e− λ2M

2 △ +log N → 0 if M >
2 △ log N

λ2

M >
c (λ, K0) log N

λ2
, λ ∈ (0, tanh (K0))

△ = 𝔼s0(s − ∑
j∈Ψ

sjJ̄j)
2

：

FN → 0 if 0 < λ < tanh (K0)

Sample complexity of -LinR ℓ1

Results from the two scalar estimators:

Sample  
complexity

To achieve  
model selection consistency 

Definition 1: An estimator is called model selection consistent if both the associated 
precision and recall satisfy and  as .Precision → 1 Recall → 1 N → ∞

Estimated Results 

Tr
ue

 R
es

ul
ts

 

as N → ∞

as N → ∞

Lower bound λ → tanh(K0)
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Definition 1: An estimator is called model selection consistent if both the associated 
precision and recall satisfy and  as .Precision → 1 Recall → 1 N → ∞

Estimated Results 

Tr
ue

 R
es

ul
ts

 

-LinR is similar 

 to -LogR !

ℓ1
ℓ1

as N → ∞

as N → ∞

Lower bound λ → tanh(K0)
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Non-Asymptotic Predictions
To account for the finite-size effect 

• Current scalar estimator (a) only produces the mean-value result
- The fluctuations of estimates in the active set  are averaged outΨ

(a) Equivalent scalar estimator for the active set

−τ

𝚜𝚘𝚏𝚝 (z, τ)

+τ z

τ = λ(1 + χ)

1
1 + (d − 1) tanh2 (K0)

z = tanh(K0)

J̄j

mean value
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Non-Asymptotic Predictions
To account for the finite-size effect 

• Current scalar estimator (a) only produces the mean-value result
- The fluctuations of estimates in the active set  are averaged outΨ

• New idea: Replacing expectation in free energy with sample average 

min
Jj

∑M
μ=1 (sμ

0 − ∑j∈Ψ sμ
j Jj − Qzμ)

2

2 (1 + χ) M
+ λ∑

j∈Ψ

Jj

sμ
0 , sμ

j, j∈Ψ ∼ P (s0, sΨ |J*)

zμ ∼ 𝒩 (0,1), μ = 1...M

̂Jj

Reduced -dimensional -LinRd ℓ1

(c) Equivalent -dimensional estimator for active setd

Accounting for the finite-size effect

- The modified free energy can be solved iteratively (Algorithm 1)

(a) Equivalent scalar estimator for the active set

−τ

𝚜𝚘𝚏𝚝 (z, τ)

+τ z

τ = λ(1 + χ)

1
1 + (d − 1) tanh2 (K0)
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Non-Asymptotic Predictions
To account for the finite-size effect 

• Current scalar estimator (a) only produces the mean-value result
- The fluctuations of estimates in the active set  are averaged outΨ

• New idea: Replacing expectation in free energy with sample averages

min
Jj

∑M
μ=1 (sμ

0 − ∑j∈Ψ sμ
j Jj − Qzμ)

2

2 (1 + χ) M
+ λ∑

j∈Ψ

Jj

sμ
0 , sμ

j, j∈Ψ ∼ P (s0, sΨ |J*)

zμ ∼ 𝒩 (0,1), μ = 1...M

̂Jj

Reduced -dimensional -LinRd ℓ1

(c) Equivalent -dimensional estimator for active setd

Accounting for the finite-size effect

- The modified free energy can be solved iteratively (Algorithm 1)

Given modified estimator (c) and scalar estimator (b),  one can then easily 
obtain the non-asymptotic performances of -LinR, e.g., Precision, Recall, 
RSS,  with a number of  MC simulations

ℓ1
TMC

Predicting Non-Asymptotic performances

(a) Equivalent scalar estimator for the active set

−τ

𝚜𝚘𝚏𝚝 (z, τ)

+τ z

τ = λ(1 + χ)

1
1 + (d − 1) tanh2 (K0)

z = tanh(K0)

J̄j

mean value
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Experimental Results
Accurate non-Asymptotic Predictions 

Ising model:

Estimators: 

• 2D  grid (loopy), K0 = 0.2, d = 4

• RR graph, K0 = 0.4, d = 3

-LinR and -LogR  
 for RR graph 

 for 2D grid graph 

ℓ1 ℓ1
λ = 0.3
λ = 0.15

• Fairly good match between theory 
and experiments, even for 2D grid.  

•  -LinR  behave similarly  as 
-LogR for precision and recall.  
ℓ1 ℓ1

Excellent match 
even for loopy graphs!
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Experimental Results
Accurate Sample Complexity Prediction 

• Recall

• Precision

: increasing to  as c > c0 (λ, K0) 1 N → ∞

c0 (λ = 0.3,K0) ≈ 19.41

: decreasing to  as c < c0 (λ, K0) 0 N → ∞

Increasing to  as 1 N → ∞

Ising model: RR graph, K0 = 0.4, d = 3

Estimators: -LinR and -LogR with  ℓ1 ℓ1 λ = 0.3

 Theoretical  
 Prediction

The prediction of the sample complexity  is  
accurate for -LinR ( and -LinR) !ℓ1 ℓ1

Sharp prediction of 
sample complexity

29

M = c log N
scaling value# samples 

-LinRℓ1

-LogRℓ1



Summary
Our work
• A unified statistical mechanics framework for precisely investigating the typical learning performances of -regularized M-

estimators. In particular, 
ℓ1

— Revealing that -LinR is model selection consistent with same order of sample complexity as -LogR ℓ1 ℓ1

— Providing accurate predictions of both the sample complexity and non-asymptotic learning performances

— An excellent agreement between the theoretical predictions and experimental results, even for graphs with many 
loops, which supports our findings. 
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Summary
Our work

— Revealing that -LinR is model selection consistent with same order of sample complexity as -LogR ℓ1 ℓ1

— Providing accurate predictions of both the sample complexity and non-asymptotic learning performances

Main Limitations
• Several Key assumptions are made in theoretical analysis, for example: 

— An excellent agreement between the theoretical predictions and experimental results, even for graphs with many 
loops, which supports our findings. 

   — Paramagnetic assumption of the Ising model 

   — Typical tree-like RR graph is considered

• Overcoming such limitations is an important direction for future work

31

• A unified statistical mechanics framework for precisely investigating the typical learning performances of -regularized M-
estimators. In particular, 

ℓ1



Thank you!

Q&A


