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Catastrophic Forgetting

* Deep networks have shown remarkable results in
the task of object detection.

 However, their performance suffers critical drops
when they are subsequently trained on novel
classes without any sample from the base classes
originally used to train the model.

* This phenomenon is known as catastrophic
forgetting.
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Existing Works Requires Co-occurrence

 Existing methods performs well when there is co-
occurrence of the unlabeled base classes in the training
data of the novel classes.

* This requirement is impractical in many real-world
settings since the base classes do not necessarily co-
occur with the novel classes.
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Using In-the-wild Data to Bridge Non
Co-occurrence

* We consider a more practical setting of complete
absence of co-occurrence of the base and novel
classes in the training data.

* We propose the use of unlabeled in-the-wild data
to bridge the non co-occurrence caused by the
missing base classes during the training of
additional novel classes.
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Our Approach: Blind Sampling Strategy

q.: Object class probability
a: Threshold
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Our Approach: Dual Teacher Distillation
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Our Approach: Dual Teacher Distillation

Image-level distillation with ROl Masks
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Our Approach: Dual Teacher Distillation

Instance-level distillation with heatmaps

“
Rols Feat. A

of Mstud’.

L
2z
4

Rols Feat. of
Mpase and Mnove!,
4

ﬂ,_----------
Qg

B Base classes

Novel classes
M Background

IN base novel stud
‘CdiSt — Emge(% U H 77{ ) ,

1 C rbas T~C
where 717 = S(g 2=y FI) M = S(& Ehot SR HI = S(& i £

- SO
W? N US School of 3 " "NEURAL INFORMATION 8
National Ui

ety | Computing ;;.x. . PROCESSING SYSTEMS
.

ooooooooooo




Our Approach: Dual Teacher Distillation

Remodeling prediction outputs
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Results

 Left Table: Results of "19+1" on VOC test set. "1-19"and
"20" ("tv") are base and novel classes.

* Right Table: Results of "15+5" on VOC test set. "1-15"and
"16-20" are the base and novel classes.

‘ mAP(%)
Class Method (base | novel | all)
1-20 (w/o co-occur) Ren [24] 73.1| 554|723
1-19 (w/o co-occur) Ren [24] 34| — | -
20 (w/o co-occur) Ren [24] — | 474 -

(1-19) + (20)
(w/o co-occur)

Shmelkov [27]
Ours (w category)

62.6 | 39.2 | 61.4
73.3[50.7 | 72.2

Ours (w/o category)

71.546.1]70.2

(1-19) + (20)
(w co-occur)

Shmelkov [27]
Zhou [40]
Ours (w category)

68.5 | 62.7 | 68.3
70.5 | 53.0 | 69.6
73.5|65.8 | 73.1

w(/o) category: with(out) class overlap in the in-the-wild
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o mAP(%)
las Doy (base | novel | all)
1-20 (w/o co-occur) Ren [24] 744 | 62.7| 71.7
1-15 (w/o co-occur) Ren [24] 20| - | -
16-20 (w/o co-occur) Ren [24] — |48.6]| -

(1-15) + (16-20)

(w/o co-occur)

Shmelkov [27]
Ours (w category)

67.2 | 46.1 | 62.0
70.5 | 49.4 | 65.3

Ours (w/o category)

70.7 [48.5 [ 65.1

Class (1-15) + (16-20)
(W co-occur)

Shmelkov [27]
Ours (w category)

68.4 | 58.4 | 65.9
72.7 | 58.4 | 69.1
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e Results of "19+1" on VOC test set. "1-19"and "20" ("tv") are

Results

base and novel classes.

mAP(%)
i Mgt (base | novel | all)
[-20 (w/o co-occur) Ren [24] 13.1 554|723
1-19 (w/o co-occur) Ren [24] 734 — —
16-20 (w/o co-occur) Ren [24] — 474 | —
(1-19) + (20) Shmelkov [27] 62.6(39.2|61.4
(w/o co-occur) Ours 71.3 | 48.6 | 70.1
(1-19) + (20) Shmelkov [27] 68.5(62.7 | 68.3
(w co-occur) Zhou [40] 70.5 1 53.0| 69.6
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Results

e Results of "10+5+5" on VOC tests et. "1-10" are the
base classes, and "11-15" and "16-20" are the two
groups of sequentially added novel classes.

mAP(%)
Cass Method (base | novel | all)
1-20 (w/o co-occur) Ren [24] 66.6 | 67.3 | 66.7
1-10 (w/o co-occur) Ren [24] 578 — | —
11-15 (w/o co-occur) Ren [24] — | 624 |
16-20 (w/o co-occur) Ren [24] — | 48.6 |
Shmelkov [27] 59.8 524|573
(_(1-11,0)4- (1 1_15)) Ours (w category) 57.0| 62.7 | 58.9
LR Ours (w/o category) | 57.3| 61.7 | 58.8
: Shmelkov [27] 59.0/ 47.3 | 53.1
( 1‘10(); iy g():;l(rl)ﬁ-zo) Owss {weeategory) | 567 | 55.1 [ 55.8
Ours (w/o category) | 56.9 | 53.9 554
(1-10)+ (1 1-15)+ (16-20) Zhou [40] 60.3 | 53.1 | 56.7
(W co-occur) Ours (w category) 68.1 | 64.8 | 66.5
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Results

e Results of “40+40" on COCO minival set. First 40 classes
are the old classes, and the next 40 are the added

classes.
Class Method AP AP50 AP75 APS APM APL
1-80 (w/o co-occur) Ren [24] 27.7 458 294 10.8 309 425
L40) ﬁ+ (4.,{3'8“) Ours 22.5 409 23.0 83 259 346
(w/o co-occur)
Shmelkov [27] | 21.3 374 - - - -
“('i{}g(;ﬁtf}ﬂ} Zhou [40] | 227 3638 i - - i
Ours 23.7 425 24.3 8.6 26,6 375
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Results

e Ablation studies for the setting of "19+1" on VOC
2007 test set.

: e RCNN RPN RCNN M IN mAP(%)
Blind sampling strategy | L + L Loy Lo | Lais thaas | matiel | aib)
T 7 6441353629
v v v 68.0 | 44.9 | 66.9
v v v 68.5 | 39.6 | 67.1
P & v 67.6 | 39.2 | 66.2
v v v v 70.0 | 44.3 | 68.7
v v i ol 715 | 46.1 | 70.2
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