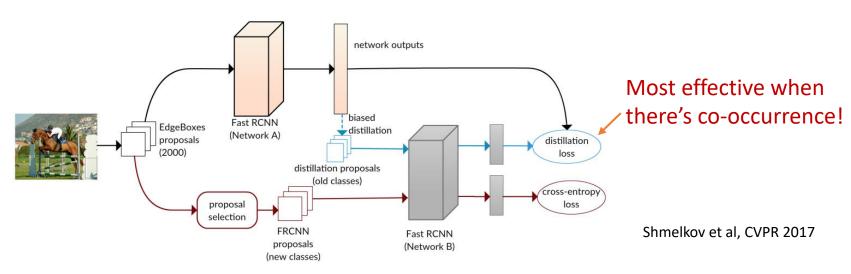
Bridging Non Co-occurrence with Unlabeled In-the-wild Data for Incremental Object Detection

Na Dong, Yongqiang Zhang, Mingli Ding, Gim Hee Lee
National University of Singapore, Harbin Institute of Technology

NeurIPS 2021

Catastrophic Forgetting

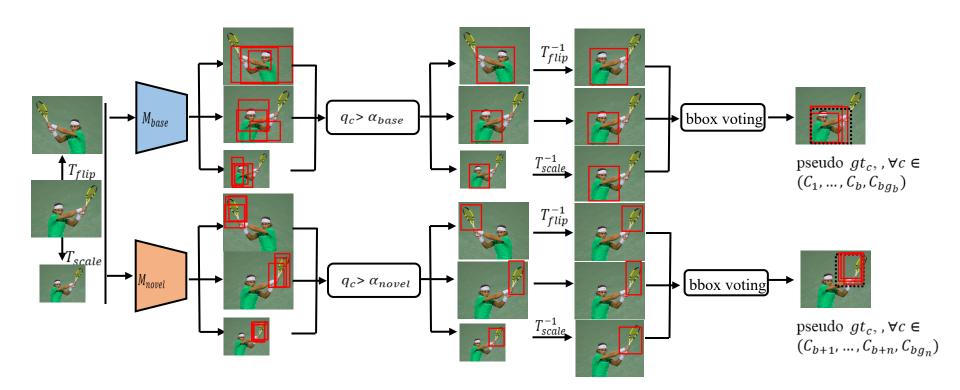

- Deep networks have shown remarkable results in the task of object detection.
- However, their performance suffers critical drops when they are subsequently trained on novel classes without any sample from the base classes originally used to train the model.
- This phenomenon is known as catastrophic forgetting.

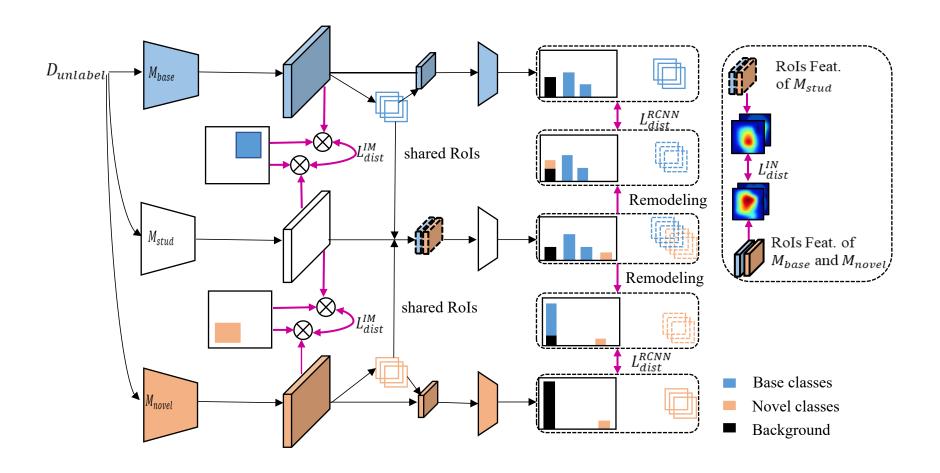
Existing Works Requires Co-occurrence

- Existing methods performs well when there is cooccurrence of the unlabeled base classes in the training data of the novel classes.
- This requirement is impractical in many real-world settings since the base classes do not necessarily cooccur with the novel classes.

Using In-the-wild Data to Bridge Non Co-occurrence

- We consider a more practical setting of complete absence of co-occurrence of the base and novel classes in the training data.
- We propose the use of unlabeled in-the-wild data to bridge the non co-occurrence caused by the missing base classes during the training of additional novel classes.




Our Approach: Blind Sampling Strategy

 q_c : Object class probability

 α : Threshold

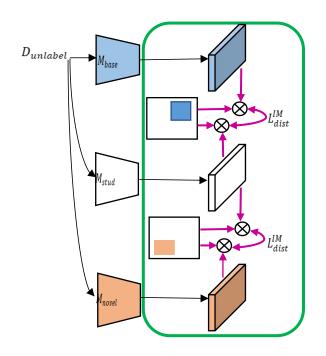
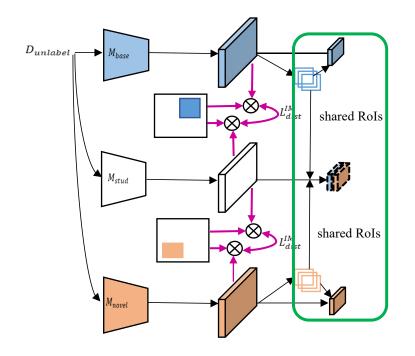
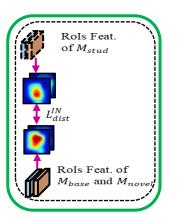


Image-level distillation with ROI Masks

Base classes

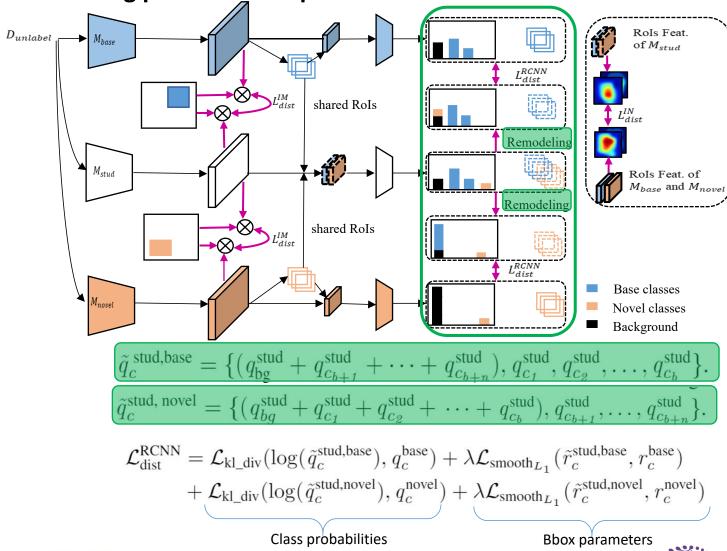
Novel classes


Background


$$\mathcal{L}_{\text{dist}}^{\text{IM}} = \frac{1}{2N^{\text{base}}} \sum_{i=1}^{W} \sum_{j=1}^{H} \sum_{k=1}^{C} Mask_{ij}^{\text{base}} \left\| F_{ijk}^{\text{stud}} - F_{ijk}^{\text{base}} \right\|^2 + \frac{1}{2N^{novel}} \sum_{i=1}^{W} \sum_{j=1}^{H} \sum_{k=1}^{C} Mask_{ij}^{\text{novel}} \left\| F_{ijk}^{\text{stud}} - F_{ijk}^{\text{novel}} \right\|^2,$$

where
$$N^{\text{base}} = \sum_{i=1}^{W} \sum_{j=1}^{H} Mask_{ij}^{\text{base}}, N^{\text{novel}} = \sum_{i=1}^{W} \sum_{j=1}^{H} Mask_{ij}^{\text{novel}}.$$

Instance-level distillation with heatmaps


- Base classes
- Novel classes
- Background

$$\mathcal{L}_{dist}^{IN} = \mathcal{L}_{mse}(\mathcal{H}^{base} \cup \mathcal{H}^{novel}, \mathcal{H}^{stud})$$
 ,

where
$$\mathcal{H}_{ij}^{\mathrm{base}} = S(\frac{1}{C}\sum_{k=1}^{C}f_{ijk}^{\mathrm{base}}), \ \mathcal{H}_{ij}^{\mathrm{novel}} = S(\frac{1}{C}\sum_{k=1}^{C}f_{ijk}^{\mathrm{novel}}), \ \mathcal{H}_{ij}^{\mathrm{stud}} = S(\frac{1}{C}\sum_{k=1}^{C}f_{ijk}^{\mathrm{stud}})$$

Remodeling prediction outputs

- Left Table: Results of "19+1" on VOC test set. "1-19" and "20" ("tv") are base and novel classes.
- **Right Table:** Results of "15+5" on VOC test set. "1-15" and "16-20" are the base and novel classes.

Class	Method	$ \begin{array}{c c} mAP(\%) \\ (base \mid novel \mid all) \end{array} $			
1-20 (w/o co-occur) 1-19 (w/o co-occur) 20 (w/o co-occur)	Ren [24] Ren [24] Ren [24]	73.1 55.4 72.3 73.4 - - - 47.4 -			
(1-19) + (20) (w/o co-occur)	Shmelkov [27] Ours (w category) Ours (w/o category)	62.6 39.2 61.4 73.3 50.7 72.2 71.5 46.1 70.2			
(1-19) + (20) (w co-occur)	Shmelkov [27] Zhou [40] Ours (w category)	68.5 62.7 68.3 70.5 53.0 69.6 73.5 65.8 73.1			

Class	Method	mAP(%) (base novel all)			
1-20 (w/o co-occur) 1-15 (w/o co-occur) 16-20 (w/o co-occur)	Ren [24] Ren [24] Ren [24]	74.4 62.7 71.7 72.0 - - - 48.6 -			
(1-15) + (16-20) (w/o co-occur)	Shmelkov [27] Ours (w category) Ours (w/o category)	67.2 46.1 62.0 70.5 49.4 65.3 70.7 48.5 65.1			
Class (1-15) + (16-20) (w co-occur)	Shmelkov [27] Ours (w category)	68.4 58.4 65.9 72.7 58.4 69.1			

w(/o) category: with(out) class overlap in the in-the-wild

• Results of "19+1" on VOC test set. "1-19" and "20" ("tv") are base and novel classes.

Class	Method	mAP(%) (base novel all)		
1-20 (w/o co-occur)	Ren [24]	73.1 55.4 72.3		
1-19 (w/o co-occur)	Ren [24]	73.4 - -		
16-20 (w/o co-occur)	Ren [24]	- 47.4 <i>-</i>		
(1-19) + (20)	Shmelkov [27]	62.6 39.2 61.4		
(w/o co-occur)	Ours	71.3 48.6 70.1		
(1-19) + (20)	Shmelkov [27]	68.5 62.7 68.3		
(w co-occur)	Zhou [40]	70.5 53.0 69.6		

 Results of "10+5+5" on VOC tests et. "1-10" are the base classes, and "11-15" and "16-20" are the two groups of sequentially added novel classes.

Class	Method	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
1-20 (w/o co-occur)	Ren [24]	66.6	67.3	66.7	
1-10 (w/o co-occur)	Ren [24]	57.8		_	
11-15 (w/o co-occur)	Ren [24]	_	62.4	_	
16-20 (w/o co-occur)	Ren [24]	_	48.6	<u> </u>	
(1.10) . (11.15)	Shmelkov [27]	59.8	52.4	57.3	
(1-10)+(11-15)	Ours (w category)	57.0	62.7	58.9	
(w/o co-occur)	Ours (w/o category)	57.3	61.7	58.8	
(1-10)+ (11-15)+ (16-20) (w/o co-occur)	Shmelkov [27]	59.0	47.3	53.1	
	Ours (w category)	56.7	55.1	55.8	
	Ours (w/o category)	56.9	53.9	55.4	
(1-10)+ (11-15)+ (16-20)	Zhou [40]	60.3	53.1	56.7	
(w co-occur)	Ours (w category)	68.1	64.8	66.5	

 Results of "40+40" on COCO minival set. First 40 classes are the old classes, and the next 40 are the added classes.

Class	Method	AP	AP50	AP75	APS	APM	APL
1-80 (w/o co-occur)	Ren [24]	27.7	45.8	29.4	10.8	30.9	42.5
(1-40) + (40-80) (w/o co-occur)	Ours	22.5	40.9	23.0	8.3	25.9	34.6
(1-40) + (40-80) (w co-occur)	Shmelkov [27]	21.3	37.4	-	-	=	-
	Zhou [40] Ours	22.7 23.7	36.8 42.5	24.3	8.6	26.6	37.5

• Ablation studies for the setting of "19+1" on VOC 2007 test set.

Blind sampling strategy	$\mathcal{L}^{ ext{RCNN}} + \mathcal{L}^{ ext{RPN}}$	$\mathcal{L}_{ ext{dist}}^{ ext{RCNN}}$	$\mathcal{L}_{ ext{dist}}^{ ext{IM}}$	$\mathcal{L}_{ ext{dist}}^{ ext{IN}}$	$ \begin{array}{c c} mAP(\%) \\ (base \mid novel \mid all) \end{array} $
✓ ✓ ✓	✓ ✓ ✓	✓	✓		64.4 35.3 62.9 68.0 44.9 66.9 68.5 39.6 67.1
✓	✓ ✓ ✓	√ ✓	✓ ✓	✓ ✓ ✓	67.6 39.2 66.2 70.0 44.3 68.7 71.5 46.1 70.2

