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Multi-Armed Bandits
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Regret Minimization

Stochastic MAB Instance with expected rewards

<M1y M2y e ey p >
Let /.L* zmax(,ul,...,,un)

Let l’l"it be the mean of the arm sampled in the time step t
Expected Cumulative Regret in T time steps

E[R(T)) = p* - T — > Elpi,]
Goal: Minimize E[R(T)]




Best-Arm ldentification

Stochastic MIAB Instance with expected rewards
< P12y ey U 2
E-best arm is an arm with mean at least 'u,* — £

(8, 5) -PAC Algorithm: Finds an &-best arm with probability at least 1 — ¢

Goal: (6, 5)-PAC algorithm such that total number of arm pulls is minimized.
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Results Overview

Main Result 1: Any single-pass algorithm will incur at least

n1/3T2/3
a2k

expected cumulative regret when M < M.
This lower bound even holds for random order arrival.
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Main Result 2: (5, 5) - PAC algorithm with
O(r) arm memory

Optimal T’-round sample complexity
Corollary: (5, 5)- PAC algorithm with O(log* n) arm memory with optimal

worst-case sample complexity
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Summary

Main Result 1: Any single-pass algorithm will incur at least

n1/3T2/3
a2k

expected cumulative regret when M < M.
This lower bound even holds for random order arrival.
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Main Result 2: (5, 5) - PAC algorithm with
O(r) arm memory

Optimal T’-round sample complexity
Corollary: (5, 5)- PAC algorithm with O(log* n) arm memory with optimal

worst-case sample complexity



Open Problems

1) Obtain instance-dependent lower bounds and upper bounds on the
expected cumulative regret for single-pass MAB algorithms with bounded
arm-memory.

2) Obtain lower bounds and upper bounds on the expected cumulative regret
for k-pass MAB algorithms with bounded arm-memory where k>1.

3) Obtain an (g, 0)-PAC streaming algorithm with O(1) arm memory and
optimal worst case sample complexity.
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