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SPD Matrices FTW!

SPDs have been used for:

o Pedestrian detection
Action and face recognition
Image classification
Visual tracking
Medical image analysis
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e They capture statistical notions
o (Gaussian distributions
o Covariance

Negative covariance Weak covariance

e (Convenient trade-off between
structural richness and
computational tractability




To operate with SPD matrices, previous work: (a)

Previous Work 1 -!:§ !

e Maps matrices to vectors (b2

e Projects points into their tangent space

e Embedding the manifold into
high-dimensional Hilbert spaces : kermet

SPD Manifold

These methods distort the geometrical

structure of the manifold Lol L avgen F ExpElg F

SPD Euclidean SPD



Previous Work

e Several distances proposed
o Affine invariant metric

o Stein metric pa
o Bures—Wasserstein metric /
o Log-Euclidean Metric

They do not fully exploit the
representational power of SPD

e (Growing need to generalize basic

operations into the SPD space

o Hard to translate operations given the lack of
closed-form expressions
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We Propose!

e Vector-valued distance function in SPD
o Compute only one vector and
derive multiple distances
o Much more information than just the distance
m Analysis and visualization tool

e (Gyrocalculus on SPD
o Arithmetic operations in the space
m Addition
m Scaling
m Rotations
m Reflections




The Space SPD

Points are positive definite real Z =
symmetric n x n matrices

SPD_: Riemannian manifold of non-positive

curvature of n(n + 1)/2 dimensions
o n-dimensional Euclidean subspaces
o n-T1 dimensional hyperbolic subspaces
o L%J hyperbolic planes

They combine hyperbolic and Euclidean

geometry thus they can accommodate:
o Hierarchical structures -> hyperbolic subspaces
o Flat structures -> Euclidean subspaces




Vector-valued Distance Function c.

_ d=5
e In Euclidean or hyperbolic spaces the only A 75 g
invariant of two points is their distance Dl
C
e Inthe SPD_space the invariant between two A d=5 B 3= f 5. 4
points is an n-dims distance vector d,=(51) A w1

e To assign this vector we employ the

vector-valued distance (VVD) function: dyo: SPDn x5PDp = R

dyo(P,Q) =log(M(P71Q), ..., A\ (PT'Q))



Advantages of the VVD

e By taking different norms on the VVD

we can compute several metrics
o Riemannian distance
o Finsler distances
o Generalize previous metrics
“One vector to rule them all”

e VD provides much more information

than just the distance
o Read the regularity of the
geodesics joining two points
o Visualize and analyze
high-dimensional embeddings
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Gyrocalculus

e Itis an algebraic formalisms to translate
Euclidean operations to other spaces in a
geometrically meaningful way

e Successful applications with
Hyperbolic geometry [Ganea et al, 2018]

o Addition

o Matrix-vector multiplication o

o Pointwise non-linearities
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Gyrocalculus in SPD
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e Addition / P& Q=VPQVP
subtraction opP=p1

e Scalar multiplication o ® P = P = exp(alog(P))

e Matrix scaling A® P =exp(A®log(P))




Isometries

e We also provide a way to learn rotations
and reflections in SPD

e Rotations Rot () = H R}(0:;)
<3

e Reflections Reﬁ H R;-(8:;)
1<J



Operations
O

Scaling
o Rotations

o Reflections

Distances

Baselines: scaling, rotations and reflections
o Euclidean space

Hyperbolic spaces
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Riemannian
Finsler One

Complex space

Knowledge Graph Completion

o(h,r,t) = —d(M, @ H) @ R, T)? + by, + b,
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Results for Knowledge Graph Completion

WN18RR FB15k-237
Operation ~Model ~MRR HR@I HR@3 HR@10 MRR HR@l HR@3 HR@I0
MURE 475 436 487 554 336 245 370 52.1
Sl MURP 481 440 495 56.6 335 243 367 51.8
5 SPDE, 481 431  50.1 576 345 251 380 53.5
SPDT 484 426 510 59.0 329 236 363 51.5

Sca

e SPD scaling outperforms Euclidean and hyperbolic models



Results for Knowledge Graph Completion

WN18RR FB15k-237
Operation Model ~MRR HR@I HR@3 HR@10 MRR HR@lI HR@3 HR@I0
MURE 475 436 487 554 336 245 370 52.1

Sl MURP 481 440 495 56.6 335 243 367 51.8
5 SPDE, 481 431  50.1 576 345 251 380 53.5
SPDEl 484 426 510 59.0 329 236 363 51.5

ROTC 476 428 492 571 338 241 375 53.3

ROTE 494 446 512 585 346 251 381 53.8

Rotations ~ROTH  49.6 449  51.4 58.6 344 246 380 53.5
SPDE ., 462 397 496 578 329 236 363 51.6

SPDEL. 409 305 482 573 321 229 354 50.5

REFE 473 430 485 561 351 256  39.0 54.1
Reflections  REFH 461 404 485 568 346 252 383 53.6
SPDE, 483 440 497 567 325 234 356 51.0

SPDIL. 487 443  50.1 574 316 225 346 50.0

e Competitive results for rotations and reflections with significantly less dimensions
e In many cases Finsler one metric outperforms the Riemannian distance



Visualization of Embeddings
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e Train, negative and validation triples for WN18RR relationships

e Position of validation triples directly correlates with performance



Knowledge Graph-based Recommender Systems

e Recommendation problem as a link prediction task over users and items
enhanced with side information

e Same models than for
Knowledge graph completion




Results for KG Recommender Systems

Model

TRANSE
RoTC
MURE
MURP
SPDE& .
SPD:",
SPD{..
SPD ..
SPDE.;
SPDE,

SOFTWARE LUXURY PANTRY MINDREADER
MRR H@10 MRR H@10 MRR H@10 MRR H@10
28.540.1 472405 356401 3523+£0.1 166300 353401 19104 37.6L£0.1
28.5+0.3 454414 33.0+0.1 49.840.2 14.54+0.0 31.3+0.2 25.3+0.3 50.31+0.6
2944+04 47.1+04 35.61+0.7 54.0+0.3 19.4+4+0.1 39.54+0.2 252403 49.940.6
29.6+0.3 479+0.3 37.5+0.1 55.240.3 19.440.1 39.840.2 25.34+0.3 49.31+0.2
2044+04 48.14+08 37.54+0.2 55.140.2 19.540.0 39.61+0.3 25.440.1 49.840.3
28.8+0.1 469+0.5 37.3+0.3 54.1+0.9 19.0+0.1 38.840.2 25.740.5 49.540.1
30.3+0.2 48.6+0.9 37.24+0.1 548+04 20.0+0.1 40.3+0.1 253+0.0 50.5+0.3
30.1+£0.1 49.14+0.3 36.9+0.1 54.54+0.6 19.24+0.0 39.3+0.1 25.74+0.0 49.54+0.2
206102 480105 3731+02 55002 193100 3971203 25353100 49.1160.1
29.31+0.1 475406 36.84+0.0 54.84+0.1 18.6+0.2 38.31+0.3 24.84+0.2 47.9+1.8

e SPD models tie or outperform baselines in all cases

e Rotations, both in Riemannian and Finsler metrics, seem to be the most

effective operator



Linear Layers on SPD

e Linear layer: feature transformation + bias addition y=Wax+0b
o Scaling
o Rotation Yy = W R T P b

o Reflection

e EXxperiments on Question Answering
o Training word embeddings on SPD

e Model o
o Model question/answer as word embeddings Q= T(@ t!) ® B
summation followed by a linear transformation — ;

o Rank question-answer similarity Sim(q, CL) — —wfd(Q, A) + Wy



Results for Question Answering

Model

FEuclidean
Hyperbolic
SPD&

SPD.-
SPDE .
SPDf!,
SPD: 5

SPDy.,

TRECQA WIKIQA
MRR H@l1 MRR H@1
55.942.0 41.0+£2.0 434403 22441.1
58.0+1.3 39.34+2.0 44.0+04 22.8%+0.6
55.440.1 37.140.1 45.540.5 24441.1
57.1+0.7 38.6+0.2 448405 24.0x+0.6
58.7+1.5 414429 446406 23.610.6
58.140.5 43.6+1.0 43.7404 23.840.8
573403 40.741.1 43.940.7 23.442.0
59.6+0.5 42.1+1.0 447+£1.2 25.0+2.5

SPD models outperform baselines in all cases

Embeddings in SPD manifolds exploited for downstream tasks

We showcase how to build linear layers on SPD



Ssummary

e (Growing need to generalize tools for SPD manifolds

e Introduce the vector-valued distance for SPD
o Riemannian, Finsler and more distances
o Visualization and analysis tools

e Gyrocalculus on SPD
o Arithmetic operations that respect the geometry of the space

e Experiments on three tasks and eight datasets
o Versatility of the approach for different types of data
o [Ease of integration with downstream tasks
o Reflect the superior expressivity of SPD




