

Implicit Semantic Response Alignment for Partial Domain Adaptation

Wenxiao Xiao1* Zhengming Ding² Hongfu Liu¹

¹Brandeis University ²Tulane University

*wenxiaoxiao@brandeis.edu

2021/12/07

Partial Domain Adaptation

- Domain Adaptation (DA) aims to learn transferable representations from a well-labeled source domain to a different but related unlabeled target domain
- A Domain Adaptation model trained on the source and target data needs to learn how to classify the target samples without accessing the target labels
- Tradition DA methods require the source and target domain share the exact same set of object categories
- While Partial Domain Adaptation focuses on a more realistic situation where target label space is only a subset of source labels space

Domain Adaptation

Partial Domain Adaptation

Previous Work & Motivation

PDA Module ${\mathcal B}$

- Previous PDA methods aims to align source and target domains by down-weighting irrelevant categories
- However, we believe the irrelevant categories still contain important information for positive transfer
- For example, cats and dogs have clear distinguished features for class separation
- On the other hand, they also share many common semantic topics including fur and four legs
- We want to extract these semantics and align them between two domains by weighting on the feature level

Methodology

- To this end, we propose Implicit Semantic Response Alignment for Partial Domain Adaptation as an add-on module
- The implicit semantic discovery module extracts semantics from the backbone features with a class2vec machine
- Each data points will be represented by an embedding vector corresponding to extracted semantics
- Each semantic topic guides the following source and target feature space alignment as an intermediate signal
- Next, we will demonstrate the semantic alignment for one semantic topic (pawls for example)

Methodology

Hidden Semantic Alignment Between Source and Target

- For each semantic, a topic attention receptor retrieves the attention corresponding to the backbone features
- The attention map has the same dimension as features and can be used as feature-level weights
- Weighted feature masks is calculated by taking the dot product between features and attention weights
- The column-wise mean vectors for the source and target feature masks are then aligned together with l_2 loss

Experiments & Results

- We add our module to the state-of-art partial domain adaptation model BA³US and conduct comprehensive experiments on three PDA benchmarks: Office-Home, ImageNet-Caltech and Office31
- As shown in Table 1&2, our method achieves best prediction accuracy in 8 out of 12 task on the challenging Office-Home and improves the BA³US by 2.22%
- For the large-scale ImageNet-Caltech we also get the state-of-art results in both tasks and improve task I->C by 1.28%, where the source domain contains a large number of irrelevant categories
- For Office31, our method achieves best or second best for all tasks and improves BA³US in 5 out of 6 tasks

Table 1: Accuracy for Partial Domain Adaptation on Office-Home

Method	$Ar{\rightarrow}Cl$	$Ar{ ightarrow}Pr$	$Ar{\rightarrow}Rw$	$Cl \rightarrow Ar$	$Cl \rightarrow Pr$	$Cl \rightarrow Rw$	$Pr \rightarrow Ar$	$Pr \rightarrow Cl$	$Pr \rightarrow Rw$	$Rw{\rightarrow}Ar$	$Rw{\rightarrow}Cl$	$Rw{\rightarrow} Pr$	Avg.
ResNet-50 [11] CDAN+E [26]	46.33 47.52	67.51 65.91	75.87 75.65	59.14 57.07	59.94 54.12	62.73 63.42	58.22 59.60	41.79 44.30	74.88 72.39	67.40 66.02	48.18 49.91	74.17 72.80	61.35 60.73
CDAINTE [20]	47.32	03.91	75.05	37.07	34.12	05.42	39.00	44.50	12.39	00.02	49.91	72.00	00.75
IWAN [50]	53.94	54.45	78.12	61.31	47.95	63.32	54.17	52.02	81.28	76.46	56.75	82.90	63.56
SAN [2]	44.42	68.68	74.60	67.49	64.99	77.80	59.78	44.72	80.07	72.18	50.21	78.66	65.30
PADA [3]	51.95	67.00	78.74	52.16	53.78	59.03	52.61	43.22	78.79	73.73	56.60	77.09	62.06
MWPDA [14]	55.39	77.53	81.27	57.08	61.03	62.33	68.74	56.42	86.67	76.70	57.67	80.06	68.41
ETN [4]	59.20	77.03	79.54	62.92	65.73	75.01	68.29	55.37	84.37	75.72	57.66	84.50	70.45
DRCN [19]	54.00	76.40	83.00	62.10	64.50	71.00	70.80	49.80	80.50	77.50	59.10	79.90	69.00
AFN [47]	58.93	76.25	81.42	70.43	72.97	77.78	72.36	55.34	80.40	75.81	60.42	79.90	71.83
SLM [37]	56.54	83.75	90.40	76.03	73.99	80.95	72.97	56.60	87.32	82.55	59.76	82.52	75.29
BA ³ US [23]	60.62	83.16	88.39	71.75	72.79	83.40	<u>75.45</u>	61.59	86.53	79.25	<u>62.80</u>	86.05	<u>75.98</u>
Ours + BA ³ US	64.66	82.97	<u>89.12</u>	<u>75.67</u>	75.52	85.36	78.51	64.24	88.07	81.27	65.31	86.67	78.20

Table 2: Accuracy for Partial Domain Adaptation on Office 31 and ImageNet-Caltech

Method	Office31								ImageNet-Caltech		
111041104	$A \rightarrow D$	$A{ ightarrow}W$	$D{ ightarrow} A$	$D{ ightarrow}W$	$W{\rightarrow}A$	$W{ ightarrow}D$	Avg.	I→C	C→I	Avg.	
ResNet-50 [11] CDAN+E [26]	83.44 77.07	75.59 80.51	83.92 93.58	96.27 98.98	84.97 91.65	98.09 98.09	87.05 89.98	69.69 72.45	71.29 72.02	70.49 72.24	
IWAN [50] SAN [2] PADA [3] MWPDA [14] ETN [4] DRCN [19] SLM [37]	90.45 94.27 82.17 95.12 95.03 86.00 98.73	89.15 93.90 86.54 96.61 94.52 88.05 99.77	95.62 94.15 92.69 95.02 96.21 95.60 96.1	99.32 99.32 99.32 100.00 100.00 100.00	94.26 88.73 95.41 95.51 94.64 95.80 95.89	99.36 99.36 100.00 100.00 100.00 99.79	94.69 94.96 92.69 97.04 96.73 94.24 98.38	78.06 77.75 77.03 - 83.23 75.30 82.31	73.33 75.26 70.48 - 74.93 78.90 81.41	75.70 76.51 73.76 - 79.08 77.10 81.86	
$\frac{\text{BA}^3\text{US [23]}}{\text{Ours} + \text{BA}^3\text{US}}$	99.36 98.73	98.98	94.82	100.00	94.99	98.73 100.00	97.80	84.00 85.28	83.35 83.73	83.68 84.50	
Ours + DA US	70.73	77.34	<u> </u>	100.00	<u> </u>	100.00	70.13	03.20	03.73	04.50	

Topic Attention Weighting

- Here we use task Ar→Cl on Office-Home to visualize the effect of our topic attention weighting
- In figure (a-c), we visualize the weights on the features of one mini-batch. As shown in figure (c), our weighting schema discoveries the information that responds to the same implicit topic on the feature level
- The t-SNE visualizations of features in figure (d-f) demonstrate that our proposed method divides existing clusters in ResNet and BA³US into smaller and well-separated clusters related to implicit semantic topics

(a-c) Entropy conditioning weight and source confidence weight of BA^3US in one mini-batch of task the $Ar \rightarrow Cl$; (c) Ours attention map for the same mini-batch; (d-f) t-SNE visualization of features from Resnet-50, BA^3US and ours of task $Ar \rightarrow Cl$

Cross-Class Interaction

- Remember our motivation is to use the shared semantic in the extra classes to promoter the positive transfer for related target classes
- Thus, we draw the similarity matrix among 9 extra source classes and 4 shared classes in the right figure. And check if our method benefits the target classes that are similar to the extra classes
- According to this figure, Computer and Clipboards are highly correlated to the extra source classes. And Table 3 shows they benefit most from our method
- On the other hand, the accuracy of Candles class decreases by 9.09% in our method, which indicates that semantic alignment may introduce noisy for the classes that do not share semantic with extra classes

Table 3: Partial domain adaptation on individual class for task Ar→Cl on *Office-Home*

Class	n_s	n_t	BA ³ US	Ours	Improv.(%)
Computer	99	44	12.12	59.60	47.48
Clipboards	40	25	67.50	87.50	20.00
Eraser	40	18	0.00	0.00	0.00
Candles	99	76	79.80	70.71	-9.09
All classes	2427	1675	60.62	64.66	4.04

Thanks!