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* Motivation
= Safety-critical systems call for formal verification methods to ensure safe operation.
= Properties like stability and robustness are crucial for reliable modeling and control.

* Objectives
= Sufficient conditions for stochastic stability of deep Markov models (DMMs).

 Approaches
= Apply system-theoretic analysis methods on DMMs.
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Deep Markov Models: Exploring connections between:
» Probabilistic graphical model (PGM) - Stability of stochastic systems
 Generative model of sequential data . Deep Markov models (DMMs)

* Applications:
« Economics, finance
« Pattern recognition
« Signal processing

* Contraction of DMM transitions
* Operator norms
* Banach fixed point theorem
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DNN g, (x) = AYhY + b, PWAmMap by, (x) = Ay (x)X + by (x).
h?p = U(A;!ilh?p—l +b;1)
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PWA activation map  y(z) = z+ | @ | =AYz +v(0)
v(zn)—v(0) 0(0)

Local linear dynamics of DNN
« At every point X, DNN can be represented as a product of PWA maps:

Ay(x)x = AYAY AY | .. AV Alx

byi=AYAY by 1 +b;, i € NF by o= by
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Definition 3. The stochastic process x; € R" is mean-square stable (MSS) if and only if there exists
€ R 3 € R™™ such that lim;_, o E(x;) = p, and lim;_, o E(x;x!) = 2.

Sufficient stability conditions of DMM: |Ae(x)]l, <1

b (x
||Ag(X)Hp+ || g( )HP <K,K>O,

1]

Vx € Domain(fp, (x), g, (X))

Local Lipschitz constant of DNN: K8(x) = [|Ag(%)]], + Hng(}”:)HT’.
x||,
Contractive weights and |Af), <1, [|AL ||, < 1de NjF,

activations imply DMM stability: . L
oY g |AS], < ™, lIAG ]I, < ™, j € Ny,

Vx € Domain(fy,(x), gs, (X)).
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Figure 2: Left panels show the effect of biases using PF regularization and Re LU activation ((a) w/o
bias, (d) w bias). Right panels show the effect of network t depths with SVD regularization and ReLU
2 (b) 1 layer, (c) 2 layers, (e) 4 layers, (f) 8 layers.
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SVD factorization Hamiltonian weight
i — diag(/\max — (/\max - /\min) ‘ J(Z)) _ 0 A
A —=UXV A = [—A | 0]

mean(A*)
mean(A*)
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Pytorch implementation: https://github.com/pnnl/slim

Jiong Zhang, et al., Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization, 2018.
Eldad Haber and Lars Ruthotto, Stable Architectures for Deep Neural Networks 2017
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Constrained operator norms of DMMs:
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- Stability of Deep Markov Models | “’ -
= Neural Networks as PWA maps m = ) m
= Contraction of PWA maps E ., % S N ) %
= Banach fixed point theorem N TN

= Operator norm constraints
= Contraction of DMMs

« Stable Weights

= Structured linear maps in Pytorch R
= https://pnnl.qgithub.io/slim/ —
« Contact =
= jan.drgona@pnnl.qov

= https://www.linkedin.com/in/drgona/ _
= https://twitter.com/jan_drgona W
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