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Toward a Theory for Deep RL



Existing RL theory cannot apply to Neural Nets

• None of these give polynomial sample complexities for even one-layer NNs.

Du, Simon S., et al. "Bilinear Classes: A Structural Framework for Provable Generalization in RL."



Neural Net Bandit: A Simplification

• Reward function 𝜂(𝜃, 𝑎)
• 𝜃 ∈ Θ: model parameter 
• 𝑎 ∈ 𝒜: continuous action

• Linear bandit: 𝜂 𝜃, 𝑎 = 𝜃!𝑎
• Neural net bandit: 𝜂 𝜃, 𝑎 = NN" 𝑎
• Realizable and deterministic reward setting:  
• Agent observes ground-truth reward 𝜂(𝜃⋆, 𝑎) after playing action 𝑎

• Goal: finding the best action
𝑎⋆ = argmax$∈𝒜 𝜂(𝜃⋆, 𝑎)



• Θ,𝒜: unit ℓ'-ball	in	ℝ(

• 𝜂 𝜃, 𝑎 = relu 𝜃!𝑎 − 0.9 , 𝑎⋆= argmax
||$||!*+

relu 𝜃⋆!𝑎 − 0.9 = 𝜃⋆

Neural Net Bandit is Statistically Hard!

𝑎 = 𝜃⋆
region with nonzero reward 

{𝑎: 𝜃⋆!𝑎 ≥ 0.9}
exp(−𝑑) prob. mass

flat region

needle in a haystack!

𝑎"

𝜂

𝑎#



𝜂 (𝜃, 𝛽), 𝑎 = 𝜃!𝑎 + 20 ⋅ relu(𝛽! 𝑎 − 0.9)

Neural Net Bandit is Statistically Hard!

𝛽⋆
𝜃⋆

global maximumlocal maximum
• Convergence to a global 

maximum is generally 
statistically intractable

• Existing RL theory cannot 
apply to NNs because 
they aim for global 
maximum

needle in a haystack!

random actions 
can learn the 

linear part 



A New Paradigm for Bandit/RL

1. Convergences to local maxima for general instances

2. Analysis of the landscape of the true reward 𝜂(𝜃⋆,⋅)

This paper



Main Results

• Theorem (informal): Under Lipschitz assumptions on 𝜂, our algorithm (ViOlin) 
converges to a 𝜖-approximate local maxima in J𝑂 𝑅 Θ 𝜖12 .

• Similar results for nonlinear RL (with many more assumptions and stochastic 
policies.)

measures hardness of online 
learning w.r.t. model class



Reviewing the Analysis of UCB

1. Optimization (high virtual reward): 
by optimism, 𝜂 𝜃3, 𝑎3 = max",$ 𝜂 𝜃, 𝑎 ≥ 𝜂(𝜃⋆, 𝑎⋆)

2. Extrapolation (in average): 

∑35+6 𝜂 𝜃3, 𝑎3 − 𝜂 𝜃⋆, 𝑎3
'
≤ dim7(Θ) ⋅ 𝑇

• 1 + 2 ⇒ 𝜂 𝜃⋆, 𝑎3 → 𝜂(𝜃⋆, 𝑎⋆)
• Step 2 fails for neural net models because dim7(Θ) ≈ exp(𝑑)

Eluder dimension

This result was independently proven in Li, Gene, Pritish Kamath, Dylan J. Foster, and Nathan Srebro. "Eluder Dimension and Generalized Rank."



Re-Prioritizing the Two Steps

1. Extrapolation by online learning (OL) oracles:

𝔼 ∑35+6 𝜂 𝜃3, 𝑎3 − 𝜂 𝜃⋆, 𝑎3
' ≤ J𝑂 𝑅 Θ T

Sequential Rademacher Complexity
[Rakhlin-Sridharan-Tewari’15]

Rakhlin, Alexander, Karthik Sridharan, and Ambuj Tewari. "Online learning via sequential complexities.” 2015.

• For finite hypothesis Θ, 𝑅 Θ = log Θ
• For neural nets: 

𝑅 Θ = poly 𝑑 vs.    Eluder dim = exp(𝑑)

OL oracle outputs a distribution of 𝜃!



Re-Prioritizing the Two Steps

1. Extrapolation by online learning (OL) oracles 

𝔼 ∑35+6 𝜂 𝜃3, 𝑎3 − 𝜂 𝜃⋆, 𝑎3
' ≤ 𝑅 Θ 𝑇 polylog T

2. High virtual reward: 
best attempt: 𝑎3 = argmax

$∈𝒜
𝔼 𝜂(𝜃3, 𝑎)

𝜂(𝜃⋆,⋅)

𝑎!
𝑎!"#

𝑎#

getting stuck L

(lack of optimism)

𝑎

𝜂 𝜃!#$,⋅



Embrace Virtual Curvature

• Need the online learner to work harder to guarantee an increasing virtual reward
• Estimating the curvature: learn 𝜃3 such that

1. 𝜂 𝜃3, 𝑎3 ≈ 𝜂(𝜃⋆, 𝑎3)
2. ∇$𝜂 𝜃3, 𝑎3 ≈ ∇$𝜂(𝜃⋆, 𝑎3)
3. ∇$'𝜂 𝜃3, 𝑎3 ≈ ∇$'𝜂(𝜃⋆, 𝑎3) 𝜂(𝜃⋆,⋅)

𝑎

𝑎!

𝑎!#$
gradient is correct?

increasing virtual reward J

LJ



ℓ3 𝜃 = 𝜂 𝜃, 𝑎3 − 𝜂 𝜃⋆, 𝑎3
' + 𝜂 𝜃, 𝑎31+ − 𝜂 𝜃⋆, 𝑎31+

'

+ ∇𝜂 𝜃, 𝑎31+ − ∇𝜂 𝜃⋆, 𝑎31+ , 𝑢3 '

• Theorem (informal): Under Lipschitz assumptions on 𝜂, ViOlin converges to a 𝜖-
approximate local maxima in J𝑂 𝑅 Θ 𝜖12 .

• ViOlin (Virtual Ascent with Online Model Learner)
1. Sample 𝑢3 ∼ 𝒩 0, 𝐼
2. Use OL to minimize losses ℓ3 and get a distribution of  𝜃3
3. Take 𝑎3 = argmax$ 𝔼""[𝜂(𝜃3, 𝑎)]

Algorithm and Theorem

Computed by finite difference 



Instantiations

• Linear bandit with structured model family: 𝜂 𝜃, 𝑎 = 𝜃!𝑎
• Θ is finite: poly(log |Θ|) sample complexity 
• Θ contains 𝑠-sparse vectors: poly(𝑠, log 𝑑) sample complexity
• local maximum are global because 𝜂 𝜃⋆,⋅ is concave. 
• only hold for deterministic reward

• Neural net bandit: 𝜂 𝑊, 𝑎 = 𝑤'!𝜎(𝑊+𝑎)
• assume 𝑂(1) norms bounds on ||𝑤'||+, 𝑊+ 8→8
• 𝑅 𝑊 ≤ J𝑂 1
• sample complexity for local max = J𝑂(1)
• Local maximum are global for input-concave neural nets



Summary

• Global convergence for nonlinear models is statistically intractable 
• ViOlin: convergence to a local maximum with sample complexity that only 

depends on the model class
• Similar results for nonlinear RL (with many more assumptions and stochastic 

policies.)

Thank you for your attention J


