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Shelve Optimism, Embrace Virtual Curvature
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Toward a Theory for Deep RL



Existing RL theory cannot apply to Neural Nets

* None of these give polynomial sample complexities for even one-layer NNs.

B-Rank | B-Complete | W-Rank | Bilinear Class (this work)

Tabular MDP
Reactive POMDP [Krishnamurthy et al., 2016]
Block MDP [Du et al., 2019a]

Flambe / Feature Selection [Agarwal et al., 2020b]
Reactive PSR [Littman and Sutton, 2002]
Linear Bellman Complete [Munos, 2005]

Linear MDPs [ Yang and Wang, 2019, Jin et al., 2020]
Linear Mixture Model [Modi et al., 2020b]
Linear Quadratic Regulator
Kernelized Nonlinear Regulator [Kakade et al., 2020]
@™ “irrelevant” State Aggregation [Li, 2009]
Linear Q*/V™* (this work)

RKHS Linear MDP (this work)

RKHS Linear Mixture MDP (this work)

Low Occupancy Complexity (this work)

()™ State-action Aggregation [Dong et al., 2020]
Deterministic linear Q* [Wen and Van Roy, 2013]

Linear Q* [Weisz et al., 2020] | Sample efficiency is not possible
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Du, Simon S., et al. "Bilinear Classes: A Structural Framework for Provable Generalization in RL."



Neural Net Bandit: A Simplification

Reward function (6, a)
e 0 € ©: model parameter
* a € A: continuous action

Linear bandit: n(6,a) = 8'Ta
Neural net bandit: n(6,a) = NNg(a)

Realizable and deterministic reward setting:

 Agent observes ground-truth reward n(8%, a) after playing action a

Goal: finding the best action
a* = argmax,c 4 n(6%, a)



Neural Net Bandit is Statistically Hard!

* 0,A: unit £,-ball in R4
* n(0,a) =relu(@'a—0.9), a*=argmaxrelu(6*'a—0.9)=0"
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exp(—d) prob. mass

needle in a haystack!



Neural Net Bandit is Statistically Hard!

. .
Con\./ergen-ce to a global ocal maximum global maximum
maximum is generally

statistically intractable 5 n40m actions \ F
can learn the .

« Existing RL theory cannot  linear part . © ’

apply to NNs because y
they aim for global VQ _
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n((0,8),a) =0"a+ 20 relu(B"a— 0.9

needle in a haystack!




A New Paradigm for Bandit/RL

1. Convergences to local maxima for general instances =& This paper

2. Analysis of the landscape of the true reward n(8*,-)



Main Results

* Theorem (informal): Under Lipschitz assumptions on 71, our algorithm (ViOlin)

converges to a e-approximate local maxima in O(R(0©)e™?®).
| S——

measures hardness of online
learning w.r.t. model class

 Similar results for nonlinear RL (with many more assumptions and stochastic
policies.)



Reviewing the Analysis of UCB

1. Optimization (high virtual reward):
by optimism, n(6¢, a;) = maxg 4 n(8,a) = n(6%,a*)
2. Extrapolation (in average):

{:1(77(91:: ar) —n(67, at))z = J%(@) - T

Eluder dimension

e 1+2 = n(@%a;) »n(0*%a")
* Step 2 fails for neural net models because dimg(0) = exp(d)

This result was independently proven in Li, Gene, Pritish Kamath, Dylan J. Foster, and Nathan Srebro. "Eluder Dimension and Generalized Rank."



Re-Prioritizing the Two Steps

1. Extrapolation by
E [ {:1(77(915: a.) —n(o”, at))2] <0 (\/R(@)T)

S AN

OL oracle outputs a distribution of 6, Sequential Rademacher Complexity
[Rakhlin-Sridharan-Tewari’15]

* For finite hypothesis ©, R(0) = log| 0|
* For neural nets:
R(O®) =poly(d) vs. Eluderdim =exp(d)

Rakhlin, Alexander, Karthik Sridharan, and Ambuj Tewari. "Online learning via sequential complexities.” 2015.



Re-Prioritizing the Two Steps

1. Extrapolation by
. 2
E |21zt (n(0c, ) = n(6%,a0))”| < VR(O)T polylog(T)

2. High virtual reward:

best attempt: a; = argmax E[n(6;, a)]
aeA

getting stuck ®

(lack of optimism)




Embrace Virtual Curvature

* Need the online learner to work harder to guarantee an increasing virtual reward

* Estimating the curvature: learn 8; such that
1. n(@nay) =n(0%, ar)
2. Van(8g ar) = Van (07, ar)
3. Van(6ar) =~ Vgn(6*,ar) n(6~,)

increasing virtual reward ©

gradient is correct?




Algorithm and Theorem

'gt(e) = (T](H' at) T 77(9*' at))z + (77(9' at—l) o 77(9*: at—l))z
+(Vn(0, ar—1) —Vn (0%, ar_1), us)?

Computed by finite difference

[ ViOlin (Virtual Ascent with Online Model Learner)

1. Sample u; ~ N (0,1)

2. Use OL to minimize losses ¥+ and get a distribution of 6;
3 Take a; = argmax, Eg, [1(6:, a)]

J

* Theorem (informal): Under Lipschitz assumptions on 7, ViOlin converges to a e-

approximate local maxima in O(R(0©)e™®).



Instantiations

e Linear bandit with structured model family:n(8,a) = 8 "a
* O is finite: poly(log |®]) sample complexity
* O contains s-sparse vectors: poly(s,log d) sample complexity
* local maximum are global because n(6*,) is concave.
* only hold for deterministic reward

* Neural net bandit: n(W, a) = w, o(W;a)
« assume 0 (1) norms bounds on |[wy||1, W1l co—0
« R(W) < 0(1)
* sample complexity for local max = 0(1)
* Local maximum are global for input-concave neural nets



Ssummary

* Global convergence for nonlinear models is statistically intractable

* ViOlin: convergence to a local maximum with sample complexity that only
depends on the model class

 Similar results for nonlinear RL (with many more assumptions and stochastic
policies.)

Thank you for your attention ©



