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\. Three properties studied in this work

1. Do different instantiations of the generalized contrastive loss
perform differently?
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A common contrastive loss

m mmm m mm .
e Contrastive loss based on cross entropy:

CLCM Wrepresentation (LI T [CTMCEC]

Let sim(u,v) = u'v/||u||||v|

&',j = —log 5 CXP(Siln(zi, zj)/T)

kil 11k €xp(sim(z;, 2x)/7)

SimCLR
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Generalized contrastive losses

An abstract form:

L generalized contrastive — Lalignment + )\['distribution

Both terms are defined on hidden representations

° Lalignment : encourages representations of augmented views to be
consistent

o Lgistribution : encourages representations (or random subset) to match
some prior distribution of high entropy (e.g. Gaussian)
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Example: a common contrastive loss

Contrastive loss based on cross entropy loss with temperature:

cNT-Xent Z log exp(sim(zz-, Zj)/’?')
2n .
i,jEMB k=1 L[k+£4] exp(sim(z;, 2x)/T)

By expanding the loss and scaling it by a constant of T:

2n
g 1 . T :
7 NT-Xent _ _ﬁ E 31m(z,-, Zj) -+ E E log E ]l[k;éz'] eXp(Slm(z’i7 zk)/T)
i.q ) k=1

~ ) N 7
N TV

£a1ignment ['distribution

sim(u, v) = uv/|ul/|v| [Wang & Isola, 2020]

Uniformity: Preserve maximal information
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What about other prior distributions?

e Is uniform hypershsepher prior (via logsumexp) really essential to the
effectiveness of contrastive loss?
e Here we explore multiple potential prior distributions:

rd /-—\"\

Uniform hypersphere Normal / Gaussian Uniform hypercube

e How do we make hidden vectors match these prior distributions?
o Sliced Wasserstein Distance (SWD) as distribution matching loss
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A wider set of instantiations

We instantiate generalized contrastive losses with different prior
distributions and Ldistribution.

Table 1: Instantiations of the generalized contrastive loss, i.e. Latignment + ALdistribution, that we use in
this work. Z denotes £5-normalized z € R¢, and is only used for uniform hypersphere prior.

4> 112 — 2| Uniform hypersphere =37 log >~ exp(Z:” Z;/7)
& > 12— 2 |>  Uniform hypersphere SWD(Z, ZP*°T)

nLd Z” | 25—z ||2 Uniform hypercube SWD(Z, Zpriory
% Zi,j |2: — 2; ||2 Normal distribution SWD(Z, ZP™+o)
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Different generalized contrastive losses perform similarly

On CIFAR-10, linear evals of ResNet-50 trained with different losses are

similar.
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Different generalized contrastive losses perform similarly

On ImageNet, linear evals of ResNet-50 trained with different losses are

similar (with a deep projection head).

Projection head layers = 2

Projection head layers =

70.0 70.0
67.5 67.5
65.0 65.0
o o
S 62.5 S 625
— —
& 60.0 A 60.0
o
= 57.5 mmm NT-Xent o 57.5 mmm NT-Xent
s Decoupled NT-Xent M Decoupled NT-Xent
55.0 mmm SWD (uniform hypersphere) 55.0 mmm SWD (uniform hypersphere)
52.5 mmm SWD (normal) 525 mmm S\WD (normal)
: mmm SWD (uniform hypercube) ; mmm SWD (uniform hypercube)
50.0 50.0
100 200 400 800 100 200 400 800
Epochs Epochs
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The impact of batch size on representation quality is small

With proper hyperparameter tuning, the impact of batch size on
representation quality is small.

Table 2: Linear eval accuracy of ResNet-50 on ImageNet.

Epoch
100 200 400 800

512 654 673 687 693
2 layers 1024 65.6 676 68.8 69.8
2048 653 67.6 690 70.1

512 66.6 684 700 71.0
3 layers 1024 66.8 689 70.1 709
2048 66.8 69.1 704 713

512 66.8 68.8 70.0 70.7
4 layers 1024 67.0 69.0 704 70.9
2048 67.0 693 704 713

Projection head  Batch size
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\. Three properties studied in this work

2. Do instance-based contrastive learning methods learn on
images with multiple objects and do they learn good local
features?
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MultiDigit dataset

Two placement strategies: (1) random, (2) grid.
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(a) 4 d1g1ts random placement.
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(c) 4 digits, in-grid placement.

Figure 2: MultiDigit dataset. More digits lead to more overlapping in random placement.



Google Research

SimCLR can still learn on images with multiple objects

Training with a given number of digits, but evaluate on a single digit at a
time.

Table 3: Top-1 linear evaluation accuracy (%) for pretrained ResNet-18 on the MultiDigits dataset.
We vary the number of digits placed on the canvas during training from 1 to 16. During evaluation
only 1 digit is present. As a baseline, a network with random weights gives 18% top-1 accuracy.

Placing of digits Number of digits (size 28 x 28)
1 2 B! 8 12 16
Supervised Random 99.5 995 993 994 989 983
P In-grid 995 996 995 993 98.6 924
SimCLR Random 989 989 99.0 989 982 96.4

In-grid 983 986 99.1 992 991 983
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SimCLR learns local features that exhibit hierarchical properties

We apply K-means with various numbers of clusters on the 12-normalized
hidden features of ResNet before average pooling.

2 Clusters 4 Clusters 6 Clusters 8 Clusters

SimCLR
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Supervised

More visualization (on ImageNet and MS-COCO)
can be found:
https://contrastive-learning.qithub.io/intriguing
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https://contrastive-learning.github.io/intriguing
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Three properties studied in this work

1. Do different instantiations of the generalized contrastive loss
perform differently?

2. Do instance-based contrastive learning methods learn on
images with multiple objects and do they learn good local
features?

3. Does feature suppression limit the contrastive learning?
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Feature suppression in contrastive learning

e As studied and shown in SImCLR, contrastive loss requires good design

of data augmentation to work well.
o One use of data augmentation is to remove “easy-to-learn” features for
the contrastive loss, e.g. color statistics.

e Competing features are different features shared between
augmented views:

— 2

AL

In common: dog class, color distribution, .. In common: dog class, ..

e Can we quantitatively study the impact (suppression effect) of
competing features?
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Datasets with controllable competing features

1. Adding competing features using channel addition: overlay a controlled
number of unique MNIST digits on ImageNet images.
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Easy-to-learn features (MNIST digit) suppress the learning of other

features (ImageNet object class)

Standard SImCLR couldn’t learn features that are good for linear evaluation

on both MNIST digits and ImageNet classes.

10 Temperature = 0.2_

BN |mageNet

Temperature = 0.1

Temperature = 0.05

1.0

B MNIST
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0 0.0 0.0
0 20 23 26 29 212 21560k 0 20 23 26 29 212 21560k 0 20 23 26 29 212 21560k
Number of unique MNIST digits Number of unique MNIST digits Number of unique MNIST digits

However, supervised learning of ImageNet classes is fine —

10 Supervised

BN mageNet

0.8 BN MNIST

0.0
0 20 22 23 26 29 21221560k
Number of unique MNIST digits
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Datasets with controllable competing features

2. Adding competing features using channel addition: place digits of
different sizes on the same canvas. We fix the size of one digit and vary the

other.

¢ 3 8
9 b 7 H Ul
9 i
0&‘ i ‘g 3 (3‘0 q
0 3 ~ 6 L1 7 /
/ l ? / & 7 3 3 9
4 7




Google Research

The presence of dominant object suppresses the learning
of features of smaller objects

Table 4: Top-1 linear evaluation accuracy (%) for pretrained ResNet-18 on the MultiDigits dataset.
We fix the size of 1st digit while increasing the size of the 2nd digit. For SimCLR, results are
presented for two temperatures. Accuracies suffered from a significant drop when increasing 2nd

digit size are red colored.

2nd digit size (1st digit is kept the same size of 20 X 20)

20x20 30x30 40x40 50x50 60x60 70x70 80 x 80

—— Ist digit 99.1 99.2 99.2 99.2 99.1 9.1 99.0

P 2nd digit 99.1 99.5 99.5 99.6 99.5 99.5 99.6
SimCLR Ist digit 97.8 97.6 96.2 96.5 88.5 74.5 39.9
(r =0.05)  2nd digit 97.8 97.9 97.8 98.3 98.2 97.7 98.2
SimCLR Ist digit 98.7 98.8 98.3 87.5 24.9 19.8 20.3
(7 =0.2) 2nd digit 98.7 099.2 99.2 99.0 99.1 98.9 99.4
Random net  1st digit 16.5 16.7 16.6 16.6 16.6 16.9 16.5
(untrained)  2nd digit 16.5 19.1 21.9 24.1 26.5 28.1 29.0
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Datasets with controllable competing features

3. Adding competing features using channel concatenation: extra channels
are controllable random bits that are shared between views.

B —)

Augmented

1

1

1

Random bits
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A few random bits completely disable learning

Temperature=0.05 Temperature=0.10 Temperature=0.20 Temperature=0.40

This phenomenon persists for different i
Batch size
batch sizes, losses (tau/lambda), and the o)
— 512
— 1024
use of EMA network (from MoCo). s
— 4096
— 8192
. 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
CI FAR‘1 O Bits Bits Bits Bits
(a) Standard NT-Xent
Temperature=0.05 Temperature=0.10 Temperature=0.20 Temperature=0.40
90
80 |~
Memory size
60 i
Q. —— 2048
o — 8192
40 — 32768
— 131072
20
10
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Bits Bits Bits Bits
(b) NT-Xent with Momentum Contrast (MoCo)
Weight=0.50 Weight=5.00 Weight=50.00 Weight=125.00
90 Batch size
80 128
— 256
~ 60 — 512
Q — 1024
(e}
= 40
20
10

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 O 5 10 15 20 25
Bits Bits Bits Bits

(c) SWD (uniform hypersphere)
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A few random bits completely disable learning

NT-Xent NT-Xent (MoCo) SWD (uniform hypersphere)
70 .X 70 1. 70 y.
H x T & T A
60 |~ : 60 z : 60 .
S -— 0.05 ., e— 0.05 — 0.5
. o —— 0.1 —_ —o— 0.1 — —— 50
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(c) ImageNet
35 NT-Xent (1=0.05) NT-Xent (1=0.1) i NT-Xent (1=0.2) ﬂ) VAE \
batch_size —
0.8 0.8 0.8 128 0.8
— 256
= —:512 =
206 0.6 0.6 g £0.6
L7y b
. Q Q batch_size
MNIST: Zos dos
—— 256
0.2 0.2 0.2 0.2 — 512
— 1024
0.0 0.0 0.0 0.0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Bits Bits Bits Bits
(a) MNIST.

Q)) MNIST using VAE. /
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Conclusion

e We propose and study a generalization of contrastive losses
o L generalized contrastive — Lalignment 5 & ALdistn'bution
o With a multi-layer projection head, various instantiations perform
similarly.
e We show instance-based contrastive learning methods can learn on
images with multiple objects and also learn meaningful local features.
e In particular, we show feature suppression poses an open challenge
o So far the most effective method is handcrafted / heuristic-based
data augmentation to favor certain features than the others
o Are there other alternatives?

Code and visualization at https://contrastive-learning.github.io/intriquing
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