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PAC-Bayes Bounds on Supervised Learning

Define: S~D", z =(x,y,), h~Q(S, P)
L(h,S)= X0, U(h,z)

L(Q,S) = Eh~g L(h,S) Training loss of Q

L(Q,D) = Epqg L(h, D) Real loss of Q

Theorem 1 ([2, 12]) Given a data distribution D, a hypothesis space H, a prior P, a confidence
level § € (0,1], and B > 0, with probability at least 1 — § over samples S ~ D™, we have for all
posterior Q,
: 1 1 m_, B
L(@.D) < L(Q.5) + 5 (Dxr(QIP) +log 3 ) + Z (L) (1)

where V(B) = log Epp E.~p exp(B(l(h,z) — L(h, D))).



Meta-Learning

Observed Tasks

Meta-training: P(P) =>Q(P)

S,~Dm
(D.,m.)~T
(Di,m;) ~ T
Meta-testing: P = Q(S, P) Target Task
S~D"
(D,m)~T
(D,m)~T

Goal: learn Q(P) over the prior distribution P for fast
adaptation of the base-learner Q(S, P) for the target task. 5



PAC-Bayes Bounds on Meta-Learning

Define:

Training loss of @

4 | el
R(Q’ S{L:l) = EPNQ [;ZL(Q(SHP)vsz)
=1

R(Q,T) :=Epno E(p,m)~t Es~pm [L(Q(S, P), D)] Real loss of @

Theorem 2 ([18, 22]) Given a task environment T and a set of n observed tasks (D;,m;) ~ T,
let P be a fixed hyper-prior and X\ > 0, B > 0, with probability at least 1 — & over samples
S € D;nl you s On € D' we have, for all base learner QQ and all hyper-posterior Q,

1

RQ.T) <R(@.510)+ (5 + 75 ) Drr(@1IP)

+ % Y Ep-~o [DkL(Q(S:, P)|P)] + C(8, A, B,n,ms). @)
i—1



Few-Shot Meta-Learning in Practice

Theorem 2 assumes that m, for the
observed task and m for the target
task come from the same task
environment T.

Problem: This assumption makes
the bounds loose when the number
of training examples in the target
tasks is limited (e.g., few-shot).

Ej[m;] > Ep[m]

Question: can we benefit from more
examples in the observed tasks?

Observed Tasks

Target Task

(Diami) ot T

(D,m)~T



PAC-Bayes Bounds for Few-Shot Meta-Learning

One way is to use the same meta-training loss of Theorem 2:

A 1a
R(Q,S ) :=Ep~g [; E L(Q(Si,P),Si)] Training loss of @
i=1

despite of the difference between the training sample sizes.
Theorem 3 For a target task environment T' and an observed task environment T where ]ET [D] —
Er[D] and Eg[m] > Er[m)], let P be a fixed hyper-prior and X > 0, B > 0, then with probability

at least 1 — & over samples S, € D1, ..., S, € D" where (D;,m;) ~ T, we have, for all base
learners QQ and hyper-posterior Q,

1

R(Q,T) <R(Q,S%) + (X - %) Dkr(Q]P)

+ 3 EpoDxu(@(S: PIP) +C6ABmm) + AP.LT), )
i=1

where A\(P,T,T) = + logEpep eAMR(P,T)—R(P,T))



PAC-Bayes Bounds for Few-Shot Meta-Learning

Reorganize the bound of Thm-3:

R(Q,T) <R(Q,S-1) + —ZEP~Q [Dk(Q(S;:, P)||P)] w,
+(5+25) Dxe@IP) £°D,,
—I—A,\(P,T,T) A

+ C(4, A, B,n,m;) Const.ifA~n, p~m,




PAC-Bayes Bounds for Few-Shot Meta-Learning

Theorem 3 introduces an additional penalty term A, , which grows monotonically
as the sample difference between observed and target tasks are bigger.

-
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The number of samples m of the
target task is fixed as 5.



PAC-Bayes Bounds for Few-Shot Meta-Learning

Can we get rid of A, in the bound?

Inspired by MAML.:

Epno %ZIZ(Q(S{,P),&) Training loss of @
=1

e Subsample training examples S’ for
training the base-learner Q(S/, P).

e Use all training examples S. to evaluate
the meta-training loss of Q(S/, P) for
training the meta-learner Q.

(D,m)~T
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PAC-Bayes Bounds for Few-Shot Meta-Learning

Theorem 4 For a target task environment T and an observed task environment T where Ex[D] =
Er[D] and Ez[m] > Er[m|, let P be a fixed hyper-prior and A\ > 0, B > 0, then with probability
at least 1 — § over samples S; € D{**,...,S, € D™ where (D;,m;) ~ T, and subsamples

S| € D;n,‘ & B i € By " C Sn, where E[m!] = Er[m], we have, for all base learner Q
and all hyper-posterior Q,

R(Q,T) <Ep.g % Y L(Q(Si, P), )
i=1

+(5+25) Dru@lP)

+ % S " Ep-q [Dx(Q(S, P)|P)] + C(5,A, B,n,m;). (6)
=1
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PAC-Bayes Bounds for Few-Shot Meta-Learning

The PAC-Bayesian bounds of
Theorems 2, 3, 4 as evaluated over

the Sinusoid dataset.

The number of samples m of the
target task is fixed as 5.
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Connection to Reptile and MAML

When the hyper-posterior 9 and base-learner Q both use the Delta-distribution:
P(P) = N(p|0,05), Q(P) =8(p = po), P(hv) =N (v|p,0?), Qi(hv) =8(v = q;),

The PAC-Bayesian bound in Thm-3 and 4 reduces to the following (neglecting the
constants):

£llp 1 o llpo—a:l
P(ZCB(pO) ZL( zaS)_*— ” 0” nBZ” 020?2 ”
i=1

As a result, one can show that using MAP estimation:

e Theorem 3 = Reptile
e Theorem 4 = MAML

15



Connection to PACOH

The optimal base-learner in the bound of Theorem-3 is the following Gibbs
distribution:

Q*(Si, P)(h) = P(h) exp(—BL(h, 5i))/Z5(S:, P)
Plugging into the bound, yields:

R(Q,T) s% ) Ep~g [—% log Z5(S:, P)| +€DkL(Q||P) + Ax+C (10)
i=1

N s

Wi

where £ = % + # and C' is the same constant from the previous bounds. Since A is independent
of @ and can be neglected during inference or optimization of Q, it reduces to the same PACOH
objective as in [22].
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PACMAML

For Theorem-4, we use

P(h) exp(—aL(h, 87))

Qi (S, P)(h) = Z.(S!, P)

And yield the following PACMAML objective:

1 1 ' AR R
RQT) <3 Y Breo|~5losZu(S),P) + 1§(@1, 5, 5] +éDxs(@IP) +C.

N )
oM

W

where ig (Q%, S;,50) £ L(Qe, S,) — %L( a o).

R o
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Gradient Estimation of PACMAML

e The PACOH and PACMAML objectives do not have closed-form integration
when the loss function is not the squared loss.

e Their gradient can be approximated using a Monte-Carlo approximation
similar to the REINFORCE algorithm.

-~

dW; 1 d / 8 OL(p+w,S;)

—— = ———VIlogZ3(S5;,p) = : (w3 55 dw,

dWa wr anOL(p+w;S;) a B i i Oliptwn 55
e _/Q,(w,so - dw+5/(Qi(w,Sz> Qf (w; SD) =22

where, Q7 (w;S;) x N(w|0,0%)exp(—BL(p+w,S;)).
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Experiments

0.40 Sinusoid

Few-Shot Regression Problems S — - Replle

L \ —== MAML

c 0351\ .. PACOH

% \\\'\ - PACMAML
e Synthetic Sinusoid Task Environment % i W, N T
e Target tasks with m=5 shots B g . e

. @ V207 "

e Squared loss, closed form solution. ]

20 40 60 80 100
m

Reptile and PACOH both have a U shape that bend up with larger m.

MAML and PACMAML monotonically reduce the generalization error with larger m.
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Experiments

Few-shot Image classification

Mini-Imagenet (5 classes, k=1 shot per class, m=1x5=5)
ANIL learning (base-learner only adapts the top layer.)

FOMAML MAML BMAML PACOH PACMAML
m; =10 | 41.8+09 473+£09 299+09 31.2+08 47.8+0.9
m; =20 | 4434+09 480+09 343+09 37.0+09 49.1+0.9
m; =40 | 46.2+1.0 478+09 415+09 41.6+09 48.9+0.9
m; =80 | 45.7+09 43.1+£09 442+09 446+09 50.1+L0.9

Table 1: Averaged test accuracy and standard error in the ANIL setting.
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Experiments

Few-shot Natural language inference

e 12 tasks covering entity typing, rating classification and text classification.
e k=4, 8, 16 shot data per class
o

ANIL learning (v=6, 9, 11, 12, base-learner only adapts layers higher than v).

k |H-SMLMT[5] MAML BMAML PACOH PACMAML

-+ 48.61 48.21 47.27 50.47 51.58
8 32.92 33.52 52.08 54.83 55.68
16 57.90 57.38 56.53 58.22 59.18

v=6 v=9 wv=11 wv=12
MAML 120G 57G 16G 4G
BMAML 121G 359G 19G 4G
PACMAML | 33G 16G  8G 4G
Table 2: Top: Averaged test accuracy over the 12 NLI tasks. Bottom: The comparison of TPU
memory (High Bandwidth Memory) usage with different adaptive layer thresholds v.
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Conclusion

e Two PAC-Bayesian bounds for few-shot meta-learning.

e Using MAP approximation, the 1st bound leads to Reptile and the 2nd bound
leads to MAML.

e \With Gibbs posterior based base-learner, the 1st bound leads to PACOH. The
2nd PAC-Bayes bound leads to a new PACMAML algorithm.

e PACMANML outperforms existing meta-learning algorithms when evaluated on
several benchmark few-shot tasks.
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