Co-Adaptation of Algorithmic and Implementational Innovations in Inference-based Deep Reinforcement Learning Hiroki Furuta¹, Tadashi Kozuno², Tatsuya Matsushima¹, Yutaka Matsuo¹, Shixiang Shane Gu³ ¹The University of Tokyo, ²University of Alberta, ³Google Brain Contact: furuta@weblab.t.u-tokyo.ac.jp # Popular Inference-based Methods Interpreting RL as probabilistic inference yields many kinds of algorithms E.g. - MPO [Abdolmaleki et al. 2018]: "Pseudo-likelihood" objective (inspired by REPS) - AWR [Peng et al. 2019]: "Pseudo-likelihood" objective and stable in offline RL - SAC [Haarnoja et al. 2018]: Maximum entropy objective and soft Q function They have similar deviations to each other, but **low-level features** (implementation design choice, code details) and **high-level design** (algorithm) are very different ## Co-Adaptation of Deep RL Algorithms Mixture of these components makes it difficult to identify the performance gaps We successfully distinguish between co-adapted and no-co-adapted design choice ## Meta Analyses of RL Algorithms #### **Prior Contributions** Henderson et al. 2017: Point out high-variance results across implementation/seeds *Tucker et al. 2018*: High performances of action-dependent baselines depends on subtle implementation choices Engstrom et al. 2019: Compare PPO/TRPO and optimize code-level designs Andrychowicz et al. 2021: List up low & high level design choices in on-policy algorithms, and combine them to PPO in a large-scale evaluations Ours: Focus on two distinct families of off-policy algorithms, provide mathematical connections, evaluate co-adaptive implementation and code design choices # Inference-based Methods & Unified Objective As in previous works [Levine 2018, Abdolmaleki et al. 2018], we can consider the marginal log-likelihood of optimality variables and its decomposition $$\log \Pr \left(\mathcal{O} = 1 | \pi_p \right) = \mathbb{E}_q \left[\log \Pr \left(\mathcal{O} = 1 | \tau \right) - \log \frac{q(\tau)}{p(\tau)} + \log \frac{q(\tau)}{p(\tau | \mathcal{O} = 1)} \right]$$ $$= \mathcal{J}(p, q) + D_{KL}(q(\tau) \mid\mid p(\tau | \mathcal{O} = 1)),$$ Inference-based methods aim to find the parametric policy that maximize ELBO ELBO: $$\mathcal{J}(p,q) := \mathbb{E}_q \left[\log \Pr(\mathcal{O} = 1 | au) \right] - D_{KL}(q(au) \mid\mid p(au))$$ $p(au) = p(s_1) \prod_t p(s_{t+1} | s_t, a_t) \pi_p(a_t | s_t), \qquad q(au) = p(s_1) \prod_t p(s_{t+1} | s_t, a_t) \pi_q(a_t | s_t),$ # Inference-based Methods & Unified Objective #### **Probability of optimality variable** $$\Pr(\mathcal{O} = 1 | \tau) \propto \exp\left(\sum_{t=1}^{T} \eta^{-1} \mathcal{G}(s_t, a_t)\right)$$ G is a function over state × action space (immediate reward, Q-function, advantage) With some relaxations (one-step, infinite-horizon, etc...), we can derive **unified objective** for recent popular SoTA off-policy algorithms (SAC, MPO, AWR) $$\mathcal{J}(\pi_p, \pi_q) = \mathbb{E}_{d_\pi(s)} [\eta^{-1} \mathcal{G}(s, a) - D_{KL}(\pi_q \mid\mid \pi_p)]$$ $$\max_{\pi_p, \pi_q} \mathcal{J}(\pi_p, \pi_q) \text{ s.t. } \int d_\pi(s) \int \pi_p(a|s) \ dads = 1 \text{ and } \int d_\pi(s) \int \pi_q(a|s) \ dads = 1$$ ## Expectation-Maximization (EM) Control (Algorithm) Solve unified objective via Expectation-Maximization algorithms **E-step**: Get non-parametric policy $\mathcal{J}(\pi_{\theta_p^{(k-1)}}, \pi_q)$ $$\mathcal{J}(\pi_q, \beta) = \int d_{\pi}(s) \int \pi_q(a|s) \frac{\mathcal{G}(s, a)}{\eta} dads$$ $$- \int d_{\pi}(s) \int \pi_q(a|s) \log \frac{\pi_q(a|s)}{\pi_{\theta_p^{(k-1)}}(a|s)} dads + \beta \left(1 - \int d_{\pi}(s) \int \pi_q(a|s) dads\right)$$ $$\pi_q^{(k)}(a|s) = Z(s)^{-1} \pi_{\theta_p^{(k-1)}}(a|s) \exp\left(\eta^{-1} \mathcal{G}(s, a)\right)$$ **M-step**: Project E-step policy to the parametric policy $\mathcal{J}(\pi_q^{(k)}, \pi_p)$ $$\max_{\theta_p} \mathbb{E}_{d_{\pi}(s)\pi_q^{(k)}(a|s)} \left[\log \pi_{\theta_p}(a|s) \right] = \max_{\theta_p} \mathbb{E}_{d_{\pi}(s)\pi_{\theta_p^{(k-1)}}(a|s)} \left[\frac{\log \pi_{\theta_p}(a|s)}{Z(s)} \exp \left(\eta^{-1} \mathcal{G}(s,a) \right) \right]$$ # Direct KL Divergence Minimization Control (Algorithm) Fix prior policy and only optimize variational posterior policy - KL-Control is a sub-problem of EM-Control (corresponding to E-step) - KL-Control converges to regularized-optimal policy, while EM-Control converges to standard-optimal policy $$\max_{\theta_q} \mathbb{E}_{d_{\pi}(s)\pi_{\theta_q}(a|s)} \left[\eta^{-1} \mathcal{G}(s,a) - \log \frac{\pi_{\theta_q}(a|s)}{\pi_p(a|s)} \right]$$ ## Taxonomy of Inference-based Algorithms - Algorithm: EM-Control or KL-Control - Implementation: Policy Updates, Value function & Estimation, Action distribution - Code: Network size, Activation function, Normalization, etc ... | Mothed | A loovith | | | Implem | entation | | |--------|-----------|----------------|------------------|---|------------------------|--| | Method | Algorithm | π_q update | π_p update | \mathcal{G} | \mathcal{G} estimate | $\pi_{ heta}$ | | MPO | EM | Analytic + TR | SG + TR | Q^{π_p} | Retrace(1) | $\pi_p = \mathcal{N}(\mu_{ heta}(s), \Sigma_{ heta}(s))$ | | AWR | EM | Analytic | Mixture + SG | $A^{\tilde{\boldsymbol{\pi}}_{\boldsymbol{p}}}$ | $TD(\lambda)$ | $\pi_p = \mathcal{N}(\mu_{ heta}(s), \Sigma)$ | | AWAC | EM | Analytic | Mixture + SG | Q^{π_p} | TD(0) | $\pi_p = \mathcal{N}(\mu_{ heta}(s), \Sigma_{ heta})$ | | SAC | KL | SG | (Fixed to Unif.) | $Q_{ extsf{soft}}^{oldsymbol{\pi_q}}$ | TD(0) + TD3 | $\pi_q = ext{Tanh}(\mathcal{N}(\mu_{ heta}(s), \Sigma_{ heta}(s)))$ | | PoWER | EM | Analytic | Analytic | $\eta \log Q^{\pi_p}$ | TD(1) | $\pi_p = \mathcal{N}(\mu_{ heta}(s), \Sigma_{ heta}(s))$ | | RWR | EM | Analytic | SG | $\eta \log r$ | _ | $\pi_p = \mathcal{N}(\mu_{ heta}(s), \Sigma)$ | | REPS | EM | Analytic | π_q | A^{π_p} | TD(0) | $\pi_p = ext{Softmax}$ | | UREX | EM | Analytic | SG | Q^{π_p} | TD(1) | $\pi_p = \text{Softmax}$ | | V-MPO | EM | Analytic + TR | SG + TR | A^{π_p} | n-step TD | $\pi_p = \mathcal{N}(\mu_{ heta}(s), \Sigma_{ heta}(s))$ | | TRPO | KL | TR | π_q | A^{π_p} | TD(1) | $\pi_q = \mathcal{N}(\mu_{ heta}(s), \Sigma_{ heta})$ | | PPO | KL | SG + TR | π_q | A^{π_p} | GAE | $\pi_q = \mathcal{N}(\mu_{ heta}(s), \Sigma_{ heta})$ | | DDPG* | KL | SG | (Fixed) | Q^{π_q} | TD(0) | $\pi_q = \mu_ heta(s)$ | | TD3* | KL | SG | (Fixed) | Q^{π_q} | TD(0) + TD3 | $\pi_q = \mu_ heta(s)$ | ## **Empirical Comparisons** Open Al Gym MuJoCo 6 tasks (See appendix for DM Control 28 tasks) ## **Empirical Comparisons** Open Al Gym MuJoCo 6 tasks (See appendix for DM Control 28 tasks) ## **Empirical Comparisons** Open Al Gym MuJoCo 6 tasks (See appendix for DM Control 28 tasks) (D): with clipped double Q-Learning [Fujimoto et al. 2018] (S): without clipped double Q-Learning | | SAC (D) | SAC (S) | AWAC (D) | AWAC (S) | MPO (D) | MPO (S) | |----------------|-----------------------------------|-----------------------------------|-----------------|----------------|----------------------------------|-----------------| | Hopper-v2 | 3013 ± 602 | 1601 ± 733 | 2329 ± 1020 | 2540 ± 755 | 2352 ± 959 | 2136 ± 1047 | | Walker2d-v2 | $\textbf{5820} \pm \textbf{411}$ | 1888 ± 922 | 3307 ± 780 | 3662 ± 712 | 4471 ± 281 | 3972 ± 849 | | HalfCheetah-v2 | 15254 ± 751 | $\textbf{15701} \pm \textbf{630}$ | 7396 ± 677 | 7226 ± 449 | 12028 ± 191 | 11769 ± 321 | | Ant-v2 | 5532 ± 1266 | 1163 ± 1326 | 3659 ± 523 | 3008 ± 375 | $\textbf{7179} \pm \textbf{190}$ | 6584 ± 455 | | Humanoid-v2 | $\textbf{8081} \pm \textbf{1149}$ | 768 ± 215 | 5243 ± 200 | 2738 ± 982 | 6858 ± 373 | 5709 ± 1081 | | Swimmer-v2 | 114 ± 21 | $\textbf{143} \pm \textbf{3}$ | 35 ± 8 | 38 ± 7 | 69 ± 29 | 70 ± 40 | (D): with clipped double Q-Learning [Fujimoto et al. 2018] (S): without clipped double Q-Learning # SAC (D) improves the performance significantly in the termination environment (Hop, Walk, Ant, Humanoid) | | SAC (D) | SAC (S) | AWAC (D) | AWAC (S) | MPO (D) | MPO (S) | |----------------|-----------------------------------|-----------------------------------|-----------------|----------------|----------------------------------|-----------------| | Hopper-v2 | $\textbf{3013} \pm \textbf{602}$ | 1601 ± 733 | 2329 ± 1020 | 2540 ± 755 | 2352 ± 959 | 2136 ± 1047 | | Walker2d-v2 | 5820 ± 411 | 1888 ± 922 | 3307 ± 780 | 3662 ± 712 | 4471 ± 281 | 3972 ± 849 | | HalfCheetah-v2 | 15254 ± 751 | $\textbf{15701} \pm \textbf{630}$ | 7396 ± 677 | 7226 ± 449 | 12028 ± 191 | 11769 ± 321 | | Ant-v2 | 5532 ± 1266 | 1163 ± 1326 | 3659 ± 523 | 3008 ± 375 | $\textbf{7179} \pm \textbf{190}$ | 6584 ± 455 | | Humanoid-v2 | $\textbf{8081} \pm \textbf{1149}$ | 768 ± 215 | 5243 ± 200 | 2738 ± 982 | 6858 ± 373 | 5709 ± 1081 | | Swimmer-v2 | 114 ± 21 | $\textbf{143} \pm \textbf{3}$ | 35 ± 8 | 38 ± 7 | 69 ± 29 | 70 ± 40 | (D): with clipped double Q-Learning [Fujimoto et al. 2018] (S): without clipped double Q-Learning #### Clipped Double Q doesn't help AWAC or MPO (EM-Controls) as significant as SAC | | SAC (D) | SAC (S) | AWAC (D) | AWAC (S) | MPO (D) | MPO (S) | |----------------|-----------------------------------|-----------------------------------|-----------------|----------------|----------------------------------|-----------------| | Hopper-v2 | 3013 ± 602 | 1601 ± 733 | 2329 ± 1020 | 2540 ± 755 | 2352 ± 959 | 2136 ± 1047 | | Walker2d-v2 | $\textbf{5820} \pm \textbf{411}$ | 1888 ± 922 | 3307 ± 780 | 3662 ± 712 | 4471 ± 281 | 3972 ± 849 | | HalfCheetah-v2 | 15254 ± 751 | $\textbf{15701} \pm \textbf{630}$ | 7396 ± 677 | 7226 ± 449 | 12028 ± 191 | 11769 ± 321 | | Ant-v2 | 5532 ± 1266 | 1163 ± 1326 | 3659 ± 523 | 3008 ± 375 | $\textbf{7179} \pm \textbf{190}$ | 6584 ± 455 | | Humanoid-v2 | $\textbf{8081} \pm \textbf{1149}$ | 768 ± 215 | 5243 ± 200 | 2738 ± 982 | 6858 ± 373 | 5709 ± 1081 | | Swimmer-v2 | 114 ± 21 | $\textbf{143} \pm \textbf{3}$ | 35 ± 8 | 38 ± 7 | 69 ± 29 | 70 ± 40 | (D): with clipped double Q-Learning [Fujimoto et al. 2018] (S): without clipped double Q-Learning → Clipped double Q-learning might be a co-dependent and indispensable choice to KL control methods | | SAC (D) | SAC (S) | AWAC (D) | AWAC (S) | MPO (D) | MPO (S) | |----------------|-----------------------------------|-----------------------------------|-----------------|----------------|----------------------------------|-----------------| | Hopper-v2 | 3013 ± 602 | 1601 ± 733 | 2329 ± 1020 | 2540 ± 755 | 2352 ± 959 | 2136 ± 1047 | | Walker2d-v2 | $\textbf{5820} \pm \textbf{411}$ | 1888 ± 922 | 3307 ± 780 | 3662 ± 712 | 4471 ± 281 | 3972 ± 849 | | HalfCheetah-v2 | 15254 ± 751 | $\textbf{15701} \pm \textbf{630}$ | 7396 ± 677 | 7226 ± 449 | 12028 ± 191 | 11769 ± 321 | | Ant-v2 | 5532 ± 1266 | 1163 ± 1326 | 3659 ± 523 | 3008 ± 375 | $\textbf{7179} \pm \textbf{190}$ | 6584 ± 455 | | Humanoid-v2 | $\textbf{8081} \pm \textbf{1149}$ | 768 ± 215 | 5243 ± 200 | 2738 ± 982 | 6858 ± 373 | 5709 ± 1081 | | Swimmer-v2 | 114 ± 21 | $\textbf{143} \pm \textbf{3}$ | 35 ± 8 | 38 ± 7 | 69 ± 29 | 70 ± 40 | ## Action Distribution for Policy (Implementation) Tanh-squashed Gaussian Policy ablations Similar to Clipped double Q-Learning, Tanh-policy seems to **highly co-adapted choice**, and EM-Controls couldn't enjoy large performance gains For EM-Control, proper action clipping is important to avoid numerical error $a \in [-1 + \epsilon, 1 - \epsilon]^{|\mathcal{A}|}$ | | SAC (w/) | SAC (w/o) | AWR (w/) | AWR (w/o) | MPO (w/) | MPO (w/o) | |----------------|-----------------------------------|----------------------|---------------------------|----------------------------------|----------------|----------------------------------| | Hopper-v2 | 3013 ± 602 | 6 ± 10 | 2709 ± 905 | $\textbf{3085} \pm \textbf{593}$ | 2149 ± 849 | 2136 ± 1047 | | Walker2d-v2 | $\textbf{5820} \pm \textbf{411}$ | $-\infty$ | 3295 ± 335 | 4717 ± 678 | 3167 ± 815 | 3972 ± 849 | | HalfCheetah-v2 | $\textbf{15254} \pm \textbf{751}$ | $-\infty$ | 3653 ± 652 | 5742 ± 667 | 9523 ± 312 | 11769 ± 321 | | Ant-v2 | 5532 ± 1266 | $-\infty$ | 445 ± 106 | 1127 ± 224 | 2880 ± 306 | $\textbf{6584} \pm \textbf{455}$ | | Humanoid-v2 | $\textbf{8081} \pm \textbf{1149}$ | $108\pm82^{\dagger}$ | $2304 \pm 1629^{\dagger}$ | 5573 ± 1020 | 6688 ± 192 | 5709 ± 1081 | | Swimmer-v2 | 114 ± 21 | 28 ± 11 | 121 ± 3 | 128 ± 4 | 110 ± 42 | 70 ± 40 | ## Code-level design choices (Code) While their mathematical connection, these modern inference-based methods have very different code-level detailed choices (referring available open-source code) | Architecture | MPO | AWR | AWAC | SAC | |-------------------------------|-----------------|--------------------|----------------|----------------| | Policy network | (256, 256, 256) | (128, 64) | (256, 256) | (256, 256) | | Value network | (512, 512, 256) | (128, 64) | (256, 256) | (256, 256) | | Activation function | ELU | ReLU | ReLU | ReLU | | Layer normalization | ✓ | - | _ | _ | | Input normalization | _ | ✓ | _ | _ | | Optimizer | Adam | SGD (momentum=0.9) | Adam | Adam | | Learning rate (policy) | 1e-4 | 5e-5 | 3e-4 | 3e-4 | | Learning rate (value) | 1e-4 | 1e-2 | 3e-4 | 3e-4 | | Weight initialization | Uniform | Xavier Uniform | Xavier Uniform | Xavier Uniform | | Initial output scale (policy) | 1.0 | 1e-4 | 1e-2 | 1e-2 | | Target update | Hard | - | Soft (5e-3) | Soft (5e-3) | | Clipped Double Q | False | _ | True | True | ## Code-level design choices (Code) While their mathematical connection, these modern inference-based methods have very different code-level detailed choices (referring available open-source code) | Architecture | MPO | AWR | AWAC | SAC | | | | | | | |---|-----------------|------------------------|------------------------|--|--|--|--|--|--|--| | Policy network | (256, 256, 256) | (128, 64) | (256, 256) | (256, 256) | | | | | | | | Value network | (512, 512, 256) | (128, 64) | (256, 256) | (256, 256) | | | | | | | | Activation function | ELU | ReLU | ReLU | ReLU | | | | | | | | Layer normalization | ✓ | _ | _ | _ | | | | | | | | <u>-</u> | - | | rmalization, and | Focus on experimental analysis on activation function, normalization, and network size | | | | | | | | Learning rate (poncy) | 10-4 | | | Н | | | | | | | | | 10 1 | 36-3 | JC- 4 | 3C-4 | | | | | | | | Learning rate (value) | 1e-4 | 1e-2 | 3e-4
3e-4 | 3e-4 | | | | | | | | Learning rate (value) Weight initialization | 35555755 3555 | 50,000,000 | (557,9657).51 | 15/4/C N | | | | | | | | | 1e-4 | 1e-2 | 3e-4 | 3e-4 | | | | | | | | Weight initialization | 1e-4
Uniform | 1e-2
Xavier Uniform | 3e-4
Xavier Uniform | 3e-4
Xavier Uniform | | | | | | | ## Activation and Normalization (Code) ELU and Layer Normalization (MPO's code-level design choices) | | 11 0 | XX 11 0.1 0 | II 1001 1 0 | 1 1 2 | 11 .1 0 | G : 2 | |-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-------------------------------| | | Hopper-v2 | Walker2d-v2 | HalfCheetah-v2 | Ant-v2 | Humanoid-v2 | Swimmer-v2 | | SAC | 3013 ± 602 | $\textbf{5820} \pm \textbf{411}$ | 15254 ± 751 | 5532 ± 1266 | 8081 ± 1149 | 114 ± 21 | | SAC-E ⁺ | 2337 ± 903 | 5504 ± 431 | $\textbf{15350} \pm \textbf{594}$ | 6457 ± 828 | $\textbf{8196} \pm \textbf{892}$ | $\textbf{146} \pm \textbf{7}$ | | SAC-L ⁺ | 2368 ± 179 | 5613 ± 762 | 13074 ± 2218 | $\textbf{7349} \pm \textbf{176}$ | 8146 ± 470 | 99 ± 18 | | $SAC-E^+L^+$ | 1926 ± 417 | 5751 ± 400 | 12555 ± 1259 | 7017 ± 132 | 7687 ± 1385 | 143 ± 9 | | MPO | 2136 ± 1047 | 3972 ± 849 | 11769 ± 321 | 6584 ± 455 | 5709 ± 1081 | 70 ± 40 | | $MPO-E^-$ | 2700 ± 879 | 3553 ± 1145 | 11638 ± 664 | 5917 ± 702 | 4870 ± 1917 | 108 ± 28 | | $MPO-L^-$ | 824 ± 250 | 2413 ± 1352 | 6064 ± 4596 | 2135 ± 2988 | 5039 ± 838 | $-\infty$ | | $MPO-E^-L^-$ | 843 ± 168 | 1708 ± 663 | -1363 ± 20965 | 807 ± 2351 | 5566 ± 787 | $-\infty$ | | AWR | 3085 ± 593 | 4717 ± 678 | 5742 ± 667 | 1127 ± 224 | 5573 ± 1020 | 128 ± 4 | | AWR-E ⁺ | 1793 ± 1305 | 4418 ± 319 | 5910 ± 754 | 2288 ± 715 | 6708 ± 226 | 128 ± 4 | | AWR-L ⁺ | 2525 ± 1130 | 4900 ± 671 | 5391 ± 232 | 639 ± 68 | 5962 ± 376 | 129 ± 2 | | AWR-E ⁺ L ⁺ | $\textbf{3234} \pm \textbf{118}$ | 4906 ± 304 | 6081 ± 753 | 2283 ± 927 | 6041 ± 270 | 130 ± 1 | ## Activation and Normalization (Code) ELU and Layer Normalization (MPO's code-level design choices) | | Hopper-v2 | Walker2d-v2 | HalfCheetah-v2 | Ant-v2 | Humanoid-v2 | Swimmer-v2 | |-----------------------------------|-----------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-------------------------------| | SAC | 3013 ± 602 | $\textbf{5820} \pm \textbf{411}$ | 15254 ± 751 | 5532 ± 1266 | 8081 ± 1149 | 114 ± 21 | | SAC-E ⁺ | 2337 ± 903 | 5504 ± 431 | $\textbf{15350} \pm \textbf{594}$ | 6457 ± 828 | $\textbf{8196} \pm \textbf{892}$ | $\textbf{146} \pm \textbf{7}$ | | SAC-L ⁺ | 2368 ± 179 | 5613 ± 762 | 13074 ± 2218 | $\textbf{7349} \pm \textbf{176}$ | 8146 ± 470 | 99 ± 18 | | SAC-E ⁺ L ⁺ | 1926 ± 417 | 5751 ± 400 | 12555 ± 1259 | 7017 ± 132 | 7687 ± 1385 | 143 ± 9 | | MPO | 2136 ± 1047 | 3972 ± 849 | 11769 ± 321 | 6584 ± 455 | 5709 ± 1081 | 70 ± 40 | #### SAC + ELU/LayerNorm improves the performance, and beats MPO in Ant | | | | | | | | |--------------------|----------------------------------|----------------|----------------|----------------|----------------|-------------| | AWR-E ⁺ | 1793 ± 1305 | 4418 ± 319 | 5910 ± 754 | 2288 ± 715 | 6708 ± 226 | 128 ± 4 | | AWR-L ⁺ | 2525 ± 1130 | 4900 ± 671 | 5391 ± 232 | 639 ± 68 | 5962 ± 376 | 129 ± 2 | | $AWR-E^+L^+$ | $\textbf{3234} \pm \textbf{118}$ | 4906 ± 304 | 6081 ± 753 | 2283 ± 927 | 6041 ± 270 | 130 ± 1 | # Activation and Normalization (Code) ELU and Layer Normalization (MPO's code-level design choices) | | Hopper-v2 | Walker2d-v2 | HalfCheetah-v2 | Ant-v2 | Humanoid-v2 | Swimmer-v2 | | | |--|----------------------------------|-----------------|-------------------|-----------------|-----------------|--------------|--|--| | MPO - ELU/LayerNorm drops the performance significantly → ELU/LayerNorm are transferable and beneficial to both EM/KL Control | | | | | | | | | | MPO | 2136 ± 1047 | 3972 ± 849 | 11769 ± 321 | 6584 ± 455 | 5709 ± 1081 | 70 ± 40 | | | | MPO-E ⁻ | 2700 ± 879 | 3553 ± 1145 | 11638 ± 664 | 5917 ± 702 | 4870 ± 1917 | 108 ± 28 | | | | $MPO-L^-$ | 824 ± 250 | 2413 ± 1352 | 6064 ± 4596 | 2135 ± 2988 | 5039 ± 838 | $-\infty$ | | | | MPO-E ⁻ L ⁻ | 843 ± 168 | 1708 ± 663 | -1363 ± 20965 | 807 ± 2351 | 5566 ± 787 | $-\infty$ | | | | AWR | 3085 ± 593 | 4717 ± 678 | 5742 ± 667 | 1127 ± 224 | 5573 ± 1020 | 128 ± 4 | | | | AWR-E ⁺ | 1793 ± 1305 | 4418 ± 319 | 5910 ± 754 | 2288 ± 715 | 6708 ± 226 | 128 ± 4 | | | | AWR-L ⁺ | 2525 ± 1130 | 4900 ± 671 | 5391 ± 232 | 639 ± 68 | 5962 ± 376 | 129 ± 2 | | | | AWR-E ⁺ L ⁺ | $\textbf{3234} \pm \textbf{118}$ | 4906 ± 304 | 6081 ± 753 | 2283 ± 927 | 6041 ± 270 | 130 ± 1 | | | (L): Large size network for MPO; (256, 256, 256) policy & (512, 512, 256) value (M): Medium size network for SAC; (256, 256) policy & value (S): Small size network for AWR; (128, 64) policy & value | | Hopper-v2 | Walker2d-v2 | HalfCheetah-v2 | Ant-v2 | Humanoid-v2 | Swimmer-v2 | |---------|---------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-------------------------------| | SAC (L) | 2486 ± 746 | 3188 ± 2115 | $\textbf{16528} \pm \textbf{183}$ | $\textbf{7495} \pm \textbf{405}$ | $\textbf{8255} \pm \textbf{578}$ | 118 ± 26 | | SAC (M) | 3013 ± 602 | $\textbf{5820} \pm \textbf{411}$ | 15254 ± 751 | 5532 ± 1266 | 8081 ± 1149 | 114 ± 21 | | SAC (S) | $\textbf{3456} \pm \textbf{81}$ | 4939 ± 284 | 12241 ± 400 | 3290 ± 691 | 7724 ± 497 | 59 ± 11 | | MPO (L) | 2136 ± 1047 | 3972 ± 849 | 11769 ± 321 | 6584 ± 455 | 5709 ± 1081 | 70 ± 40 | | MPO (M) | 661 ± 79 | 1965 ± 1426 | $-\infty$ | 5192 ± 538 | 6015 ± 771 | 81 ± 28 | | MPO (S) | 430 ± 99 | 2055 ± 990 | 5003 ± 1567 | 3587 ± 957 | 4745 ± 1428 | 59 ± 28 | | AWR (L) | 3221 ± 193 | 4688 ± 648 | 4360 ± 542 | 35 ± 43 | 665 ± 54 | $\textbf{133} \pm \textbf{3}$ | | AWR (M) | 2816 ± 910 | 4826 ± 547 | 5538 ± 720 | 413 ± 117 | 3849 ± 1647 | $\textbf{133} \pm \textbf{2}$ | | AWR (S) | 3085 ± 593 | 4717 ± 678 | 5742 ± 667 | 1127 ± 224 | 5573 ± 1020 | 128 ± 4 | (L): Large size network for MPO; (256, 256, 256) policy & (512, 512, 256) value (M): Medium size network for SAC; (256, 256) policy & value (S): Small size network for AWR; (128, 64) policy & value | | Hopper-v2 | Walker2d-v2 | HalfCheetah-v2 | Ant-v2 | Humanoid-v2 | Swimmer-v2 | |---------|----------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|--------------| | SAC (L) | 2486 ± 746 | 3188 ± 2115 | $\textbf{16528} \pm \textbf{183}$ | $\textbf{7495} \pm \textbf{405}$ | $\textbf{8255} \pm \textbf{578}$ | 118 ± 26 | | SAC (M) | 3013 ± 602 | $\textbf{5820} \pm \textbf{411}$ | 15254 ± 751 | 5532 ± 1266 | 8081 ± 1149 | 114 ± 21 | | SAC (S) | 3456 ± 81 | 4939 ± 284 | 12241 ± 400 | 3290 ± 691 | 7724 ± 497 | 59 ± 11 | # SAC is robust to network size (L) and (M) can be first choices | AWR (M) | 2816 ± 910 | 4826 ± 547 | 5538 ± 720 | 413 ± 117 | 3849 ± 1647 | $\textbf{133} \pm \textbf{2}$ | |---------|----------------|----------------|----------------|----------------|-----------------|-------------------------------| | AWR (S) | 3085 ± 593 | 4717 ± 678 | 5742 ± 667 | 1127 ± 224 | 5573 ± 1020 | 128 ± 4 | (L): Large size network for MPO; (256, 256, 256) policy & (512, 512, 256) value (M): Medium size network for SAC; (256, 256) policy & value (S): Small size network for AWR; (128, 64) policy & value #### MPO highly depends on Large size network | BAC (B) | 0400 T 01 | 4303 ± 204 | 12241 1 400 | 0230 ± 031 | 1124 1 431 | 00 T 11 | |---------|-----------------|-----------------|-----------------|----------------|-----------------|-------------| | MPO (L) | 2136 ± 1047 | 3972 ± 849 | 11769 ± 321 | 6584 ± 455 | 5709 ± 1081 | 70 ± 40 | | MPO (M) | 661 ± 79 | 1965 ± 1426 | $-\infty$ | 5192 ± 538 | 6015 ± 771 | 81 ± 28 | | MPO (S) | 430 ± 99 | 2055 ± 990 | 5003 ± 1567 | 3587 ± 957 | 4745 ± 1428 | 59 ± 28 | | AWK (L) | 3221 ± 193 | 4000 ± 040 | 4500 ± 042 | 30 ± 43 | 000 ± 04 | 133 ± 3 | | AWR (M) | 2816 ± 910 | 4826 ± 547 | 5538 ± 720 | 413 ± 117 | 3849 ± 1647 | 133 ± 2 | | AWR (S) | 3085 ± 593 | 4717 ± 678 | 5742 ± 667 | 1127 ± 224 | 5573 ± 1020 | 128 ± 4 | Hopper-v2 (L): Large size network for MPO; (256, 256, 256) policy & (512, 512, 256) value (M): Medium size network for SAC; (256, 256) policy & value (S): Small size network for AWR; (128, 64) policy & value Walker2d-v2 | | 110ppc1-v2 | walkerzu-vz | Tranchectan-v2 | Ant-v2 | Trumanoid-v2 | 5 willing 1-v2 | | |--|----------------|-----------------|-----------------------------------|----------------------------------|----------------------------------|-------------------------------|--| | SAC (L) | 2486 ± 746 | 3188 ± 2115 | $\textbf{16528} \pm \textbf{183}$ | $\textbf{7495} \pm \textbf{405}$ | $\textbf{8255} \pm \textbf{578}$ | 118 ± 26 | | | | 2012 600 | P000 411 | 15054 751 | FF00 1000 | 0001 1140 | 111 101 | | | AWR shows the robustness in low-dim state tasks, while flagilities in high-dim state tasks (Ant 111-dim, Humanoid 376-dim) | | | | | | | | | MPO (S) | 430 ± 00 | 2055 ± 000 | 5003 ± 1567 | 3587 ± 057 | 1715 + 1198 | 50 ± 28 | | | AWR (L) | 3221 ± 193 | 4688 ± 648 | 4360 ± 542 | 35 ± 43 | 665 ± 54 | $\textbf{133} \pm \textbf{3}$ | | | AWR (M) | 2816 ± 910 | 4826 ± 547 | 5538 ± 720 | 413 ± 117 | 3849 ± 1647 | 133 ± 2 | | | AWR (S) | 3085 ± 593 | 4717 ± 678 | 5742 ± 667 | 1127 ± 224 | 5573 ± 1020 | 128 ± 4 | | HalfCheetah-v2 Ant-v2 Humanoid-v2 Swimmer-v? ### Summary - We first reformulated recent inference-based off-policy algorithms (MPO, AWR, SAC) into a unified mathematical objective, and exhaustively clarified the algorithmic and implementational differences - 2. Though the extensive and precise ablations, we found the co-adaptive and no-co-adaptive implementation & code details - 3. EM-Control seems robust to implementation, while KL-Control seems robust to code design choices We hope our work can encourage more works that study precisely the impacts of algorithmic properties and empirical design choices across a broader spectrum of deep RL algorithms