
Co-Adaptation of Algorithmic and
Implementational Innovations in

Inference-based Deep Reinforcement Learning

Hiroki Furuta1, Tadashi Kozuno2, Tatsuya Matsushima1,

Yutaka Matsuo1, Shixiang Shane Gu3

1The University of Tokyo, 2University of Alberta, 3Google Brain

Contact: furuta@weblab.t.u-tokyo.ac.jp

NeurIPS 2021

Popular Inference-based Methods

Interpreting RL as probabilistic inference yields many kinds of algorithms

E.g.

● MPO [Abdolmaleki et al. 2018]: “Pseudo-likelihood” objective (inspired by REPS)

● AWR [Peng et al. 2019]: “Pseudo-likelihood” objective and stable in offline RL

● SAC [Haarnoja et al. 2018]: Maximum entropy objective and soft Q function

They have similar deviations to each other, but low-level features (implementation

design choice, code details) and high-level design (algorithm) are very different

2

Co-Adaptation of Deep RL Algorithms

Mixture of these components makes it difficult to identify the performance gaps

We successfully distinguish between co-adapted and no-co-adapted design choice

3

Algorithm
Mathematical formulation

Implementation
Policy, Value function, Update

Code
Network size, Activation

function, Normalization,...

Deep RL Method

Meta Analyses of RL Algorithms

Prior Contributions

Henderson et al. 2017: Point out high-variance results across implementation/seeds

Tucker et al. 2018: High performances of action-dependent baselines depends on
subtle implementation choices

Engstrom et al. 2019: Compare PPO/TRPO and optimize code-level designs

Andrychowicz et al. 2021: List up low & high level design choices in on-policy
algorithms, and combine them to PPO in a large-scale evaluations

Ours: Focus on two distinct families of off-policy algorithms, provide mathematical
connections, evaluate co-adaptive implementation and code design choices

4

Inference-based Methods & Unified Objective

As in previous works [Levine 2018, Abdolmaleki et al. 2018], we can consider the marginal
log-likelihood of optimality variables and its decomposition

Inference-based methods aim to find the parametric policy that maximize ELBO

ELBO:

5

Inference-based Methods & Unified Objective

Probability of optimality variable

G is a function over state × action space (immediate reward, Q-function, advantage)

With some relaxations (one-step, infinite-horizon, etc...), we can derive unified
objective for recent popular SoTA off-policy algorithms (SAC, MPO, AWR)

6

Expectation-Maximization (EM) Control (Algorithm)

Solve unified objective via Expectation-Maximization algorithms

E-step: Get non-parametric policy

M-step: Project E-step policy to the parametric policy

7

Direct KL Divergence Minimization Control (Algorithm)

Fix prior policy and only optimize variational posterior policy

● KL-Control is a sub-problem of EM-Control (corresponding to E-step)
● KL-Control converges to regularized-optimal policy, while EM-Control

converges to standard-optimal policy

8

Taxonomy of Inference-based Algorithms

● Algorithm: EM-Control or KL-Control
● Implementation: Policy Updates, Value function & Estimation, Action

distribution
● Code: Network size, Activation function, Normalization, etc ...

9

Empirical Comparisons

Open AI Gym MuJoCo 6 tasks (See appendix for DM Control 28 tasks)

10

Empirical Comparisons

Open AI Gym MuJoCo 6 tasks (See appendix for DM Control 28 tasks)

11

SAC is consistently better than EM-Control methods

Empirical Comparisons

Open AI Gym MuJoCo 6 tasks (See appendix for DM Control 28 tasks)

12

In Ant, MPO outperforms SAC a lot

Clipped Double Q-Learning (Implementation)

(D): with clipped double Q-Learning [Fujimoto et al. 2018]

(S): without clipped double Q-Learning

13

Clipped Double Q-Learning (Implementation)

(D): with clipped double Q-Learning [Fujimoto et al. 2018]

(S): without clipped double Q-Learning

14

SAC (D) improves the performance significantly in the termination environment
(Hop, Walk, Ant, Humanoid)

Clipped Double Q-Learning (Implementation)

(D): with clipped double Q-Learning [Fujimoto et al. 2018]

(S): without clipped double Q-Learning

15

Clipped Double Q doesn’t help AWAC or MPO (EM-Controls) as significant as SAC

Clipped Double Q-Learning (Implementation)

(D): with clipped double Q-Learning [Fujimoto et al. 2018]

(S): without clipped double Q-Learning

→ Clipped double Q-learning might be a co-dependent and indispensable choice
to KL control methods

16

Action Distribution for Policy (Implementation)

Tanh-squashed Gaussian Policy ablations

Similar to Clipped double Q-Learning, Tanh-policy seems to highly co-adapted
choice, and EM-Controls couldn’t enjoy large performance gains

For EM-Control, proper action clipping is important to avoid numerical error

17

Code-level design choices (Code)

While their mathematical connection, these modern inference-based methods have
very different code-level detailed choices (referring available open-source code)

18

Code-level design choices (Code)

While their mathematical connection, these modern inference-based methods have
very different code-level detailed choices (referring available open-source code)

19

Focus on experimental analysis on activation function, normalization, and network size

Activation and Normalization (Code)

ELU and Layer Normalization (MPO’s code-level design choices)

20

Activation and Normalization (Code)

ELU and Layer Normalization (MPO’s code-level design choices)

21

SAC + ELU/LayerNorm improves the performance, and beats MPO in Ant

Activation and Normalization (Code)

ELU and Layer Normalization (MPO’s code-level design choices)

22

MPO - ELU/LayerNorm drops the performance significantly
→ ELU/LayerNorm are transferable and beneficial to both EM/KL Control

Network Size (Code)

(L): Large size network for MPO; (256, 256, 256) policy & (512, 512, 256) value

(M): Medium size network for SAC; (256, 256) policy & value

(S): Small size network for AWR; (128, 64) policy & value

23

Network Size (Code)

(L): Large size network for MPO; (256, 256, 256) policy & (512, 512, 256) value

(M): Medium size network for SAC; (256, 256) policy & value

(S): Small size network for AWR; (128, 64) policy & value

24

SAC is robust to network size
(L) and (M) can be first choices

Network Size (Code)

(L): Large size network for MPO; (256, 256, 256) policy & (512, 512, 256) value

(M): Medium size network for SAC; (256, 256) policy & value

(S): Small size network for AWR; (128, 64) policy & value

25

MPO highly depends on Large size network

Network Size (Code)

(L): Large size network for MPO; (256, 256, 256) policy & (512, 512, 256) value

(M): Medium size network for SAC; (256, 256) policy & value

(S): Small size network for AWR; (128, 64) policy & value

26

AWR shows the robustness in low-dim state tasks,
while flagilities in high-dim state tasks (Ant 111-dim, Humanoid 376-dim)

Summary

1. We first reformulated recent inference-based off-policy algorithms (MPO, AWR,
SAC) into a unified mathematical objective, and exhaustively clarified the
algorithmic and implementational differences

2. Though the extensive and precise ablations, we found the co-adaptive and
no-co-adaptive implementation & code details

3. EM-Control seems robust to implementation, while KL-Control seems robust to
code design choices

We hope our work can encourage more works that study precisely the impacts of
algorithmic properties and empirical design choices across a broader spectrum
of deep RL algorithms

27

