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e transfer learning e replace E[-] by non-linear utility ¢/[-]
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e borrow GP1/GPE (e.g. successor features) from the risk-neutral setting®

e provide task generalization by exploiting the structure of the task/reward space
e design a method suitable for offline RL?
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e incorporate risk explicitly by e.g. penalizing the variance of returns
!Barreto, André, et al. "Successor Features for Transfer in Reinforcement Learning.” NIPS. 2017.
2Levine, Sergey, et al. " Offline reinforcement learning...” arXiv. 2020.
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e use cached Q(s’,a’) in each successor
state to bootstrap the estimated Q-values
in state s

Q(s;a) = Esop(ys,a)[Re + 7Q(S', m(S)]
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Suppose an initial policy 7 is given:
e compute the value of 7, e.g.
Q"(s,a) = Esiup(js,a)[RE +7Q(S',7(S5))] a policy evaluation
e construct a new policy 7’ according to

7'(s) € argmax Q™ (s, a) 4 policy improvement
acA

Policy Improvement Theorem: 7’ is “better’ than 7, e.g. Q™ (s,a) > Q" (s, a)



Generalized Policy lteration




Generalized Policy lteration

Alternating between evaluation and improvement leads to an optimal policy




Generalized Policy lteration

Alternating between evaluation and improvement leads to an optimal policy

Key Ildea: Replace m with multiple source policies 71 ... 7wp.



Generalized Policy Improvement 2.0




Generalized Policy Improvement 2.0

Suppose 71, ... 7T, are given!:

'Barreto, André, et al. "Successor Features for Transfer in Reinforcement Learning.” NeurlPS 2017.



Generalized Policy Improvement 2.0

Suppose 71, ... 7, are given':
e compute the values

Q™ (s,a),...Q™(s,a) < generalized policy evaluation (GPE)

'Barreto, André, et al. "Successor Features for Transfer in Reinforcement Learning.” NeurlPS 2017.



Generalized Policy Improvement 2.0

Suppose 71, ... 7T, are given!:
e compute the values

Q™ (s,a),...Q™(s,a) < generalized policy evaluation (GPE)
e pick the policy with the best return

i* € argmax Q™ (s, a)
i

'Barreto, André, et al. "Successor Features for Transfer in Reinforcement Learning.” NeurlPS 2017.



Generalized Policy Improvement 2.0

Suppose 71, ... 7, are given':

e compute the values
Q™ (s,a),...Q™(s,a) < generalized policy evaluation (GPE)
e pick the policy with the best return
" € argmax Q" (s, a)
e construct 7’ as usual but w.r.t. the “blest” policy m;«
7'(s) € argmax Q™" (s, a) = arg max max Q™ (s, a)

acA acA i=L.
< generalized pollcy improvement (GPI)

'Barreto, André, et al. "Successor Features for Transfer in Reinforcement Learning.” NeurlPS 2017.



Generalized Policy Improvement 2.0

Suppose 71, ... 7, are given':

e compute the values
Q™ (s,a),...Q™(s,a) < generalized policy evaluation (GPE)
e pick the policy with the best return
" € argmax Q" (s, a)
e construct 7’ as usual but w.r.t. the “blest” policy m;«
7'(s) € argmax Q™" (s, a) = arg max max Q™ (s, a)
acA acA =l

< generalized pollcy improvement (GPI)

Key result: 7’ is better than 7;«.
!Barreto, André, et al. "Successor Features for Transfer in Reinforcement Learning.” NeurlPS 2017.
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e considering optimizing a final cost Z:
>UU 0 e it is easy to check that p1(Z)(w) = 60

O UD +100 for all w, so Z is riskier than a
DU +100 deterministic cash flow of W = 50 at
DD 0 time 1

_ o e yet, po(Z)(w) =40 and so Z is less
e consider the dynamic risk measure risky than W at time Ol

pen(Z) = max  E,[Z|F], Key idea: Z has become riskier just be-
’ pc{0.4,0.6} .
cause time has passed!
for k=0,1,2
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Variance Reduction in MDPs with Entropic Utilities

We use the entropic utility to measure risk:

e defined in terms of the moment-generating function

1
Us[R] = = logE [e’BR}
B
e has the Taylor expansion
Us[R] = E[R] + gV[R] + 0(8?) < B is a level of risk-aversion

e connected to the mean-variance optimization in MDPs!

Mannor, Shie, and John N. Tsitsiklis. " Mean-variance optimization in Markov decision processes.”
ICML. 2011.
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1
=3 log Eq/p(.|s.2) [e

} Qjs(s.a) = Uz

[r(s.a.5") + Qfi1,5(s". The1(s")]
f{r(s.a.s')+Q[_1j(s’.rr,,“(s'))}} )

e recursive property: behaves similar to expectation in total-reward episodic
MDPs! (and discounted MDPs with simple modifications)

e convex/concave: satisfies properties that can be seen as rational decision making

e time consistency: can focus on Markov policies

!Osogami, Takayuki. " Robustness and risk-sensitivity in Markov decision processes.” NeurlPS 2012.
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Risk-Aware GPE
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Conclusion: only risk-aware GPI results in the correct target policy
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e is a strict policy improvement operator

Theorem 1 (GPI for Entropic Utility). Let 7y, ... m, be arbitrary deterministic Markov policies
with utilities Q! gr - Qh evaluated in an (J?‘bfﬁ‘al’} task M, suchthat | Q5 (s, a)— Qps(s,a)| < ¢
foralls € S, ae A i= 1..nand heT. Define
7, (s) € arg max max Oh s(s,a), VseS. 4
acA i=1..
Then,
Qhsls,a) 2max Qpis(s,a) —2(T —h+1)s, h<T.

e is optimal up to an irreducible task discrepancy gap
Theorem 2. Let Q;;.-s be the utilities of optimal Markov policies 7} from task M; but evaluated in task

M with reward function v (s, a, s'). Furthermore, let é;‘d be such that |Q;‘3(s a)—Qpis(s.a)l <e
foralls e S,ae A heT andi=1...n, and let © be the corresponding policy in (4). Finally,
let 6, = min;_q__,sup, , . |r(s,a.s") —r;i(s,a,s")|. Then,

Q7 s(s.0) = @ s(s.@)| 2T —h+1)(6, +¢), h<T.
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Generalized Policy Evaluation

Assume linear reward:

Now:

Qu(s,a) =E

r(s,a,s") = ¢(s,a,s')w

S0 =S, AO = a, At ~ W(St)]

Z’Yt'[\’t
t

Z’ytd)tTW ’ 50 =S, AO = a, At ~ 7T(St)]
t

T
50 =S, Ao = a, AtNW(St)] w

Z ’Ytht
t

¥ (s.2)
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Can generalize GPE to distributions of return:

T

Qhs(s.a) = U [Z r(se, me(St), St+1)

t=h

— Us [Wi(s.a)™w]

One simple trick is to Taylor expand to the second moment:
Us [V (s,a)Tw] = Ep[W} (s, a)"w] + g\/arp[\ll;;(s, a)'w] + 0(5?)
~p(s,a)Tw+ ngVarp[\ll’,f(s, a)lw = szﬁ(s, a)

Reduces to a (simpler) problem of estimating sufficient statistics of the feature
occupancy
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Risk-Aware GPE

Y™ and X7

Bellman principle

Ei(s,a) = Egrp(isa) [0n00T + 5741 (8 whar () |1 = s, an = d] ap az QA

m
! F Ui(s,-)
Theorem 3 (Convergence of Covariance). Let || - || be a matrix-compatible norm, and sup- return

pose there exists ¢ © S x A x T — [0,00) such that || Y] (s,a) — ¥f(s.a)||* < en(s.a) and o
T = f P3(s,0) L

[Eg/mp(-fs,a) [571(’4/;}:(‘5’« Tha1(s)) = R (" whe1 (1)) ]| < enls.a). Then,
Hzg(s.n) —Eap(lon) [5,15; + Egﬂ(g'_m,ﬂ(;))} H < 3en(s, a). .
w
b e
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Domains

Two domains from Barreto et al., 2017:
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Introduce reward volatility:

e traps X for four-room
e action noise + danger zones for reacher
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Four-Room

Train on a sequence of 128 random task instances, for 20,000 steps each
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Train on four source tasks, test periodically on 8 unseen test tasks:

26



Reacher

Train on four source tasks, test periodically on 8 unseen test tasks:

Normalized Return

o
0

o
o

N
iN

o
N

©
o

|
o
N

A
1

SnasEd
I s

s

 jm==RaSFC51 === RaC51
\vpaed == = SFC51 - = C51
0 i 2 3 4

Training Task Instance

Failures

120

100

80

60

40

20

MIVA, = = SFC51

= RASFC51 === RaC51

= = C51

AN -
d v
A VLISES
" NN

1 2 3
Training Task Instance

26



Reacher

Does the agent learn risk-sensitive behavior?
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How sensitive is the agent to 37 Does the C51 method help in learning SFs?
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Conclusion

In conclusion:

e we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer
in domains where tasks have different goals

e we extended generalized policy improvement to the risk-aware setting with
entropic utilities

e we then extended the notion of generalized policy evaluation via the Taylor
expansion of the entropic utility

e together, risk-aware GPl and GPE are shown to inherit the superior task
generalization abilities of successor features, while also learning to avoid risky

situations
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