
Risk-Aware Transfer in Reinforcement Learning using

Successor Features

Michael Gimelfarb1,3 André Barreto2 Scott Sanner1,3 Chi-Guhn Lee1

1University of Toronto
2DeepMind
3Vector Institute (Affiliate Program)



Introduction

1



Motivation

Figure 1: Sample Efficiency (Source: original

paper on Rainbow DQN)

Figure 2: Risk-Awareness (Source: Wikimedia

Commons)

• transfer learning • replace E[·] by non-linear utility U [·]

2



Motivation

Figure 1: Sample Efficiency (Source: original

paper on Rainbow DQN)

Figure 2: Risk-Awareness (Source: Wikimedia

Commons)

• transfer learning • replace E[·] by non-linear utility U [·]

2



Motivation

Figure 1: Sample Efficiency (Source: original

paper on Rainbow DQN)

Figure 2: Risk-Awareness (Source: Wikimedia

Commons)

• transfer learning • replace E[·] by non-linear utility U [·]
2



Motivation

Our goals:

• transfer between tasks with shared dynamics and different goals

• borrow GPI/GPE (e.g. successor features) from the risk-neutral setting1

• provide task generalization by exploiting the structure of the task/reward space

• design a method suitable for offline RL2

• incorporate risk explicitly by e.g. penalizing the variance of returns
1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NIPS. 2017.
2Levine, Sergey, et al. ”Offline reinforcement learning...” arXiv. 2020.

3



Motivation

Our goals:

• transfer between tasks with shared dynamics and different goals

• borrow GPI/GPE (e.g. successor features) from the risk-neutral setting1

• provide task generalization by exploiting the structure of the task/reward space

• design a method suitable for offline RL2

• incorporate risk explicitly by e.g. penalizing the variance of returns
1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NIPS. 2017.
2Levine, Sergey, et al. ”Offline reinforcement learning...” arXiv. 2020.

3



Motivation

Our goals:

• transfer between tasks with shared dynamics and different goals

• borrow GPI/GPE (e.g. successor features) from the risk-neutral setting1

• provide task generalization by exploiting the structure of the task/reward space

• design a method suitable for offline RL2

• incorporate risk explicitly by e.g. penalizing the variance of returns

1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NIPS. 2017.

2Levine, Sergey, et al. ”Offline reinforcement learning...” arXiv. 2020.

3



Motivation

Our goals:

• transfer between tasks with shared dynamics and different goals

• borrow GPI/GPE (e.g. successor features) from the risk-neutral setting1

• provide task generalization by exploiting the structure of the task/reward space

• design a method suitable for offline RL2

• incorporate risk explicitly by e.g. penalizing the variance of returns

1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NIPS. 2017.

2Levine, Sergey, et al. ”Offline reinforcement learning...” arXiv. 2020.

3



Motivation

Our goals:

• transfer between tasks with shared dynamics and different goals

• borrow GPI/GPE (e.g. successor features) from the risk-neutral setting1

• provide task generalization by exploiting the structure of the task/reward space

• design a method suitable for offline RL2

• incorporate risk explicitly by e.g. penalizing the variance of returns

1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NIPS. 2017.
2Levine, Sergey, et al. ”Offline reinforcement learning...” arXiv. 2020.

3



Motivation

Our goals:

• transfer between tasks with shared dynamics and different goals

• borrow GPI/GPE (e.g. successor features) from the risk-neutral setting1

• provide task generalization by exploiting the structure of the task/reward space

• design a method suitable for offline RL2

• incorporate risk explicitly by e.g. penalizing the variance of returns
1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NIPS. 2017.
2Levine, Sergey, et al. ”Offline reinforcement learning...” arXiv. 2020.

3



Motivation

Introduce Risk-Aware Successor Features (RaSF)

Transfers Skills Exploits Task Structure Risk-Sensitive

Risk-Aware RL 7 7 3

Risk-Aware Transfer 3 7 3

Successor Features 3 3 7

RaSF (Ours) 3 3 3

4



Motivation

Introduce Risk-Aware Successor Features (RaSF)

Transfers Skills Exploits Task Structure Risk-Sensitive

Risk-Aware RL 7 7 3

Risk-Aware Transfer 3 7 3

Successor Features 3 3 7

RaSF (Ours) 3 3 3

4



Preliminaries – Successor Features

5



Policy Evaluation

• E[R0 + γR1 + . . . ] requires averaging all

possible future outcomes of the world –

curse of dimensionality

• use cached Q(s ′, a′) in each successor

state to bootstrap the estimated Q-values

in state s

Q(s, a) = ES ′∼P(·|s,a)[Rt + γQ(S ′, π(S ′)]

6



Policy Evaluation

• E[R0 + γR1 + . . . ] requires averaging all

possible future outcomes of the world –

curse of dimensionality

• use cached Q(s ′, a′) in each successor

state to bootstrap the estimated Q-values

in state s

Q(s, a) = ES ′∼P(·|s,a)[Rt + γQ(S ′, π(S ′)]

6



Policy Evaluation

• E[R0 + γR1 + . . . ] requires averaging all

possible future outcomes of the world –

curse of dimensionality

• use cached Q(s ′, a′) in each successor

state to bootstrap the estimated Q-values

in state s

Q(s, a) = ES ′∼P(·|s,a)[Rt + γQ(S ′, π(S ′)]

6



Policy Improvement

Suppose an initial policy π is given:

• compute the value of π, e.g.

Qπ(s, a) = ES ′∼P(·|s,a)[Rπt + γQ(S ′, π(S ′))] / policy evaluation

• construct a new policy π′ according to

π′(s) ∈ arg max
a∈A

Qπ(s, a) / policy improvement

Policy Improvement Theorem: π′ is “better” than π, e.g. Qπ′(s, a) ≥ Qπ(s, a)

7



Policy Improvement

Suppose an initial policy π is given:

• compute the value of π, e.g.

Qπ(s, a) = ES ′∼P(·|s,a)[Rπt + γQ(S ′, π(S ′))] / policy evaluation

• construct a new policy π′ according to

π′(s) ∈ arg max
a∈A

Qπ(s, a) / policy improvement

Policy Improvement Theorem: π′ is “better” than π, e.g. Qπ′(s, a) ≥ Qπ(s, a)

7



Policy Improvement

Suppose an initial policy π is given:

• compute the value of π, e.g.

Qπ(s, a) = ES ′∼P(·|s,a)[Rπt + γQ(S ′, π(S ′))] / policy evaluation

• construct a new policy π′ according to

π′(s) ∈ arg max
a∈A

Qπ(s, a) / policy improvement

Policy Improvement Theorem: π′ is “better” than π, e.g. Qπ′(s, a) ≥ Qπ(s, a)

7



Policy Improvement

Suppose an initial policy π is given:

• compute the value of π, e.g.

Qπ(s, a) = ES ′∼P(·|s,a)[Rπt + γQ(S ′, π(S ′))] / policy evaluation

• construct a new policy π′ according to

π′(s) ∈ arg max
a∈A

Qπ(s, a) / policy improvement

Policy Improvement Theorem: π′ is “better” than π, e.g. Qπ′(s, a) ≥ Qπ(s, a)

7



Policy Improvement

Suppose an initial policy π is given:

• compute the value of π, e.g.

Qπ(s, a) = ES ′∼P(·|s,a)[Rπt + γQ(S ′, π(S ′))] / policy evaluation

• construct a new policy π′ according to

π′(s) ∈ arg max
a∈A

Qπ(s, a) / policy improvement

Policy Improvement Theorem: π′ is “better” than π, e.g. Qπ′(s, a) ≥ Qπ(s, a)

7



Generalized Policy Iteration

Alternating between evaluation and improvement leads to an optimal policy

Key Idea: Replace π with multiple source policies π1 . . . πn.

8



Generalized Policy Iteration

Alternating between evaluation and improvement leads to an optimal policy

Key Idea: Replace π with multiple source policies π1 . . . πn.

8



Generalized Policy Iteration

Alternating between evaluation and improvement leads to an optimal policy

Key Idea: Replace π with multiple source policies π1 . . . πn.

8



Generalized Policy Improvement 2.0

Suppose π1, . . . πn are given1:

• compute the values

Qπ1(s, a), . . .Qπn(s, a) / generalized policy evaluation (GPE)

• pick the policy with the best return

i∗ ∈ arg max
i

Qπi (s, a)

• construct π′ as usual but w.r.t. the “best” policy πi∗

π′(s) ∈ arg max
a∈A

Qπi∗ (s, a) = arg max
a∈A

max
i=1...n

Qπi (s, a)

/ generalized policy improvement (GPI)

Key result: π′ is better than πi∗ .
1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NeurIPS 2017.

9



Generalized Policy Improvement 2.0

Suppose π1, . . . πn are given1:

• compute the values

Qπ1(s, a), . . .Qπn(s, a) / generalized policy evaluation (GPE)

• pick the policy with the best return

i∗ ∈ arg max
i

Qπi (s, a)

• construct π′ as usual but w.r.t. the “best” policy πi∗

π′(s) ∈ arg max
a∈A

Qπi∗ (s, a) = arg max
a∈A

max
i=1...n

Qπi (s, a)

/ generalized policy improvement (GPI)

Key result: π′ is better than πi∗ .

1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NeurIPS 2017.

9



Generalized Policy Improvement 2.0

Suppose π1, . . . πn are given1:

• compute the values

Qπ1(s, a), . . .Qπn(s, a) / generalized policy evaluation (GPE)

• pick the policy with the best return

i∗ ∈ arg max
i

Qπi (s, a)

• construct π′ as usual but w.r.t. the “best” policy πi∗

π′(s) ∈ arg max
a∈A

Qπi∗ (s, a) = arg max
a∈A

max
i=1...n

Qπi (s, a)

/ generalized policy improvement (GPI)

Key result: π′ is better than πi∗ .

1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NeurIPS 2017.

9



Generalized Policy Improvement 2.0

Suppose π1, . . . πn are given1:

• compute the values

Qπ1(s, a), . . .Qπn(s, a) / generalized policy evaluation (GPE)

• pick the policy with the best return

i∗ ∈ arg max
i

Qπi (s, a)

• construct π′ as usual but w.r.t. the “best” policy πi∗

π′(s) ∈ arg max
a∈A

Qπi∗ (s, a) = arg max
a∈A

max
i=1...n

Qπi (s, a)

/ generalized policy improvement (GPI)

Key result: π′ is better than πi∗ .

1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NeurIPS 2017.

9



Generalized Policy Improvement 2.0

Suppose π1, . . . πn are given1:

• compute the values

Qπ1(s, a), . . .Qπn(s, a) / generalized policy evaluation (GPE)

• pick the policy with the best return

i∗ ∈ arg max
i

Qπi (s, a)

• construct π′ as usual but w.r.t. the “best” policy πi∗

π′(s) ∈ arg max
a∈A

Qπi∗ (s, a) = arg max
a∈A

max
i=1...n

Qπi (s, a)

/ generalized policy improvement (GPI)

Key result: π′ is better than πi∗ .

1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NeurIPS 2017.

9



Generalized Policy Improvement 2.0

Suppose π1, . . . πn are given1:

• compute the values

Qπ1(s, a), . . .Qπn(s, a) / generalized policy evaluation (GPE)

• pick the policy with the best return

i∗ ∈ arg max
i

Qπi (s, a)

• construct π′ as usual but w.r.t. the “best” policy πi∗

π′(s) ∈ arg max
a∈A

Qπi∗ (s, a) = arg max
a∈A

max
i=1...n

Qπi (s, a)

/ generalized policy improvement (GPI)

Key result: π′ is better than πi∗ .
1Barreto, André, et al. ”Successor Features for Transfer in Reinforcement Learning.” NeurIPS 2017.

9



Preliminaries – Risk-Aversion in MDPs using Entropic

Utility Functions

10



Time-Consistency

Optimizing risk measures in sequential problems is hard2:

• considering optimizing a final cost Z :

+100
+100

00

0

• consider the dynamic risk measure

ρk,N(Z ) = max
p∈{0.4,0.6}

Ep[Z |Fk ],

for k = 0, 1, 2

• it is easy to check that ρ1(Z )(ω) = 60

for all ω, so Z is riskier than a

deterministic cash flow of W = 50 at

time 1

• yet, ρ0(Z )(ω) = 40 and so Z is less

risky than W at time 0!

Key idea: Z has become riskier just be-

cause time has passed!

2Chow, Yin-Lam, and Marco Pavone. ”A framework for time-consistent, risk-averse model predictive

control: Theory and algorithms.” 2014 American Control Conference. IEEE, 2014.

11



Time-Consistency

Optimizing risk measures in sequential problems is hard2:

• considering optimizing a final cost Z :

+100
+100

00

0

• consider the dynamic risk measure

ρk,N(Z ) = max
p∈{0.4,0.6}

Ep[Z |Fk ],

for k = 0, 1, 2

• it is easy to check that ρ1(Z )(ω) = 60

for all ω, so Z is riskier than a

deterministic cash flow of W = 50 at

time 1

• yet, ρ0(Z )(ω) = 40 and so Z is less

risky than W at time 0!

Key idea: Z has become riskier just be-

cause time has passed!

2Chow, Yin-Lam, and Marco Pavone. ”A framework for time-consistent, risk-averse model predictive

control: Theory and algorithms.” 2014 American Control Conference. IEEE, 2014.
11



Time-Consistency

Optimizing risk measures in sequential problems is hard2:

• considering optimizing a final cost Z :

+100
+100

00

0

• consider the dynamic risk measure

ρk,N(Z ) = max
p∈{0.4,0.6}

Ep[Z |Fk ],

for k = 0, 1, 2

• it is easy to check that ρ1(Z )(ω) = 60

for all ω, so Z is riskier than a

deterministic cash flow of W = 50 at

time 1

• yet, ρ0(Z )(ω) = 40 and so Z is less

risky than W at time 0!

Key idea: Z has become riskier just be-

cause time has passed!

2Chow, Yin-Lam, and Marco Pavone. ”A framework for time-consistent, risk-averse model predictive

control: Theory and algorithms.” 2014 American Control Conference. IEEE, 2014.
11



Time-Consistency

Optimizing risk measures in sequential problems is hard2:

• considering optimizing a final cost Z :

+100
+100

00

0

• consider the dynamic risk measure

ρk,N(Z ) = max
p∈{0.4,0.6}

Ep[Z |Fk ],

for k = 0, 1, 2

• it is easy to check that ρ1(Z )(ω) = 60

for all ω, so Z is riskier than a

deterministic cash flow of W = 50 at

time 1

• yet, ρ0(Z )(ω) = 40 and so Z is less

risky than W at time 0!

Key idea: Z has become riskier just be-

cause time has passed!

2Chow, Yin-Lam, and Marco Pavone. ”A framework for time-consistent, risk-averse model predictive

control: Theory and algorithms.” 2014 American Control Conference. IEEE, 2014.
11



Time-Consistency

Optimizing risk measures in sequential problems is hard2:

• considering optimizing a final cost Z :

+100
+100

00

0

• consider the dynamic risk measure

ρk,N(Z ) = max
p∈{0.4,0.6}

Ep[Z |Fk ],

for k = 0, 1, 2

• it is easy to check that ρ1(Z )(ω) = 60

for all ω, so Z is riskier than a

deterministic cash flow of W = 50 at

time 1

• yet, ρ0(Z )(ω) = 40 and so Z is less

risky than W at time 0!

Key idea: Z has become riskier just be-

cause time has passed!

2Chow, Yin-Lam, and Marco Pavone. ”A framework for time-consistent, risk-averse model predictive

control: Theory and algorithms.” 2014 American Control Conference. IEEE, 2014.
11



Time-Consistency

Optimizing risk measures in sequential problems is hard2:

• considering optimizing a final cost Z :

+100
+100

00

0

• consider the dynamic risk measure

ρk,N(Z ) = max
p∈{0.4,0.6}

Ep[Z |Fk ],

for k = 0, 1, 2

• it is easy to check that ρ1(Z )(ω) = 60

for all ω, so Z is riskier than a

deterministic cash flow of W = 50 at

time 1

• yet, ρ0(Z )(ω) = 40 and so Z is less

risky than W at time 0!

Key idea: Z has become riskier just be-

cause time has passed!

2Chow, Yin-Lam, and Marco Pavone. ”A framework for time-consistent, risk-averse model predictive

control: Theory and algorithms.” 2014 American Control Conference. IEEE, 2014.
11



Time-Consistency

Optimizing risk measures in sequential problems is hard2:

• considering optimizing a final cost Z :

+100
+100

00

0

• consider the dynamic risk measure

ρk,N(Z ) = max
p∈{0.4,0.6}

Ep[Z |Fk ],

for k = 0, 1, 2

• it is easy to check that ρ1(Z )(ω) = 60

for all ω, so Z is riskier than a

deterministic cash flow of W = 50 at

time 1

• yet, ρ0(Z )(ω) = 40 and so Z is less

risky than W at time 0!

Key idea: Z has become riskier just be-

cause time has passed!

2Chow, Yin-Lam, and Marco Pavone. ”A framework for time-consistent, risk-averse model predictive

control: Theory and algorithms.” 2014 American Control Conference. IEEE, 2014.
11



Variance Reduction in MDPs with Entropic Utilities

We use the entropic utility to measure risk:

• defined in terms of the moment-generating function

Uβ[R] =
1

β
logE

[
eβR

]
• has the Taylor expansion

Uβ[R] = E[R] +
β

2
V[R] + O(β2) / β is a level of risk-aversion

• connected to the mean-variance optimization in MDPs1

1Mannor, Shie, and John N. Tsitsiklis. ”Mean-variance optimization in Markov decision processes.”

ICML. 2011.

12



Variance Reduction in MDPs with Entropic Utilities

We use the entropic utility to measure risk:

• defined in terms of the moment-generating function

Uβ[R] =
1

β
logE

[
eβR

]
• has the Taylor expansion

Uβ[R] = E[R] +
β

2
V[R] + O(β2) / β is a level of risk-aversion

• connected to the mean-variance optimization in MDPs1

1Mannor, Shie, and John N. Tsitsiklis. ”Mean-variance optimization in Markov decision processes.”

ICML. 2011.

12



Variance Reduction in MDPs with Entropic Utilities

We use the entropic utility to measure risk:

• defined in terms of the moment-generating function

Uβ[R] =
1

β
logE

[
eβR

]

• has the Taylor expansion

Uβ[R] = E[R] +
β

2
V[R] + O(β2) / β is a level of risk-aversion

• connected to the mean-variance optimization in MDPs1

1Mannor, Shie, and John N. Tsitsiklis. ”Mean-variance optimization in Markov decision processes.”

ICML. 2011.

12



Variance Reduction in MDPs with Entropic Utilities

We use the entropic utility to measure risk:

• defined in terms of the moment-generating function

Uβ[R] =
1

β
logE

[
eβR

]
• has the Taylor expansion

Uβ[R] = E[R] +
β

2
V[R] + O(β2) / β is a level of risk-aversion

• connected to the mean-variance optimization in MDPs1

1Mannor, Shie, and John N. Tsitsiklis. ”Mean-variance optimization in Markov decision processes.”

ICML. 2011.

12



Variance Reduction in MDPs with Entropic Utilities

We use the entropic utility to measure risk:

• defined in terms of the moment-generating function

Uβ[R] =
1

β
logE

[
eβR

]
• has the Taylor expansion

Uβ[R] = E[R] +
β

2
V[R] + O(β2) / β is a level of risk-aversion

• connected to the mean-variance optimization in MDPs1

1Mannor, Shie, and John N. Tsitsiklis. ”Mean-variance optimization in Markov decision processes.”

ICML. 2011.

12



Variance Reduction in MDPs with Entropic Utilities

We incorporate entropic utility into MDPs:

• dynamic programming: has a Bellman equation formulation

• recursive property: behaves similar to expectation in total-reward episodic

MDPs1 (and discounted MDPs with simple modifications)

• convex/concave: satisfies properties that can be seen as rational decision making

• time consistency: can focus on Markov policies

1Osogami, Takayuki. ”Robustness and risk-sensitivity in Markov decision processes.” NeurIPS 2012.

13



Variance Reduction in MDPs with Entropic Utilities

We incorporate entropic utility into MDPs:

• dynamic programming: has a Bellman equation formulation

• recursive property: behaves similar to expectation in total-reward episodic

MDPs1 (and discounted MDPs with simple modifications)

• convex/concave: satisfies properties that can be seen as rational decision making

• time consistency: can focus on Markov policies

1Osogami, Takayuki. ”Robustness and risk-sensitivity in Markov decision processes.” NeurIPS 2012.

13



Variance Reduction in MDPs with Entropic Utilities

We incorporate entropic utility into MDPs:

• dynamic programming: has a Bellman equation formulation

• recursive property: behaves similar to expectation in total-reward episodic

MDPs1 (and discounted MDPs with simple modifications)

• convex/concave: satisfies properties that can be seen as rational decision making

• time consistency: can focus on Markov policies

1Osogami, Takayuki. ”Robustness and risk-sensitivity in Markov decision processes.” NeurIPS 2012.

13



Variance Reduction in MDPs with Entropic Utilities

We incorporate entropic utility into MDPs:

• dynamic programming: has a Bellman equation formulation

• recursive property: behaves similar to expectation in total-reward episodic

MDPs1 (and discounted MDPs with simple modifications)

• convex/concave: satisfies properties that can be seen as rational decision making

• time consistency: can focus on Markov policies

1Osogami, Takayuki. ”Robustness and risk-sensitivity in Markov decision processes.” NeurIPS 2012.

13



Variance Reduction in MDPs with Entropic Utilities

We incorporate entropic utility into MDPs:

• dynamic programming: has a Bellman equation formulation

• recursive property: behaves similar to expectation in total-reward episodic

MDPs1 (and discounted MDPs with simple modifications)

• convex/concave: satisfies properties that can be seen as rational decision making

• time consistency: can focus on Markov policies

1Osogami, Takayuki. ”Robustness and risk-sensitivity in Markov decision processes.” NeurIPS 2012.

13



Roadmap

Risk-Aware GPE Risk-Aware GPI

14



Theory

15



Motivating Example

Why is the problem non-trival?

S

G
X
X Y

16



Motivating Example

Why is the problem non-trival?

S

G
X
X Y

16



Motivating Example

Why is the problem non-trival?

S

G
X
X Y

16



Motivating Example

1. Define a family of tasks:

• two source tasks:

low failure cost + high failure cost

• one target task:

only X has high failure cost

2. Solve them with VI for fixed β

S

G
X
X Y

3. Apply risk-aware and risk-neutral GPI:

G
X
X Y

G
X
X Y

−30 −20 −10 0 10
episode return

0.0

0.1

0.2

0.3

de
ns

ity

risk-aware GPI
risk-neutral GPI

Conclusion: only risk-aware GPI results in the correct target policy

17



Motivating Example

1. Define a family of tasks:

• two source tasks:

low failure cost + high failure cost

• one target task:

only X has high failure cost

2. Solve them with VI for fixed β

S

G
X
X Y

3. Apply risk-aware and risk-neutral GPI:

G
X
X Y

G
X
X Y

−30 −20 −10 0 10
episode return

0.0

0.1

0.2

0.3

de
ns

ity

risk-aware GPI
risk-neutral GPI

Conclusion: only risk-aware GPI results in the correct target policy

17



Motivating Example

1. Define a family of tasks:

• two source tasks:

low failure cost + high failure cost

• one target task:

only X has high failure cost

2. Solve them with VI for fixed β

S

G
X
X Y

3. Apply risk-aware and risk-neutral GPI:

G
X
X Y

G
X
X Y

−30 −20 −10 0 10
episode return

0.0

0.1

0.2

0.3

de
ns

ity

risk-aware GPI
risk-neutral GPI

Conclusion: only risk-aware GPI results in the correct target policy

17



Motivating Example

1. Define a family of tasks:

• two source tasks:

low failure cost + high failure cost

• one target task:

only X has high failure cost

2. Solve them with VI for fixed β

S

G
X
X Y

3. Apply risk-aware and risk-neutral GPI:

G
X
X Y

G
X
X Y

−30 −20 −10 0 10
episode return

0.0

0.1

0.2

0.3

de
ns

ity

risk-aware GPI
risk-neutral GPI

Conclusion: only risk-aware GPI results in the correct target policy
17



Key Theoretical Results

Armed with this knowledge, we prove that risk-aware GPI:

• is a strict policy improvement operator

• is optimal up to an irreducible task discrepancy gap

18



Key Theoretical Results

Armed with this knowledge, we prove that risk-aware GPI:

• is a strict policy improvement operator

• is optimal up to an irreducible task discrepancy gap

18



Key Theoretical Results

Armed with this knowledge, we prove that risk-aware GPI:

• is a strict policy improvement operator

• is optimal up to an irreducible task discrepancy gap

18



Key Theoretical Results

Armed with this knowledge, we prove that risk-aware GPI:

• is a strict policy improvement operator

• is optimal up to an irreducible task discrepancy gap

18



Generalized Policy Evaluation

Assume linear reward:

r(s, a, s ′) = φ(s, a, s ′)
ᵀ
w

Now:

Qπ
w(s, a) = E

[∑
t

γtRt

∣∣∣ S0 = s, A0 = a, At ∼ π(St)

]

= E

[∑
t

γtφt
ᵀw
∣∣∣S0 = s, A0 = a, At ∼ π(St)

]

= E

[∑
t

γtφt

∣∣∣S0 = s, A0 = a, At ∼ π(St)

]
︸ ︷︷ ︸

ψπ(s,a)

ᵀ

w

19



Generalized Policy Evaluation

Assume linear reward:

r(s, a, s ′) = φ(s, a, s ′)
ᵀ
w

Now:

Qπ
w(s, a) = E

[∑
t

γtRt

∣∣∣ S0 = s, A0 = a, At ∼ π(St)

]

= E

[∑
t

γtφt
ᵀw
∣∣∣S0 = s, A0 = a, At ∼ π(St)

]

= E

[∑
t

γtφt

∣∣∣S0 = s, A0 = a, At ∼ π(St)

]
︸ ︷︷ ︸

ψπ(s,a)

ᵀ

w

19



Generalized Policy Evaluation

Assume linear reward:

r(s, a, s ′) = φ(s, a, s ′)
ᵀ
w

Now:

Qπ
w(s, a) = E

[∑
t

γtRt

∣∣∣ S0 = s, A0 = a, At ∼ π(St)

]

= E

[∑
t

γtφt
ᵀw
∣∣∣S0 = s, A0 = a, At ∼ π(St)

]

= E

[∑
t

γtφt

∣∣∣S0 = s, A0 = a, At ∼ π(St)

]
︸ ︷︷ ︸

ψπ(s,a)

ᵀ

w

19



Risk-Aware GPE

Can generalize GPE to distributions of return:

Qπh,β(s, a) = Uβ

[
T∑
t=h

r(st , πt(st), st+1)

]
= Uβ [Ψπ

h (s, a)ᵀw]

One simple trick is to Taylor expand to the second moment:

Uβ [Ψπ
h (s, a)ᵀw] = EP [Ψπ

h (s, a)ᵀw] +
β

2
VarP [Ψπ

h (s, a)ᵀw] + O(β2)

≈ ψπh (s, a)ᵀw +
β

2
wᵀVarP [Ψπ

h (s, a)]w = Q̃πh,β(s, a)

Reduces to a (simpler) problem of estimating sufficient statistics of the feature

occupancy

20



Risk-Aware GPE

Can generalize GPE to distributions of return:

Qπh,β(s, a) = Uβ

[
T∑
t=h

r(st , πt(st), st+1)

]
= Uβ [Ψπ

h (s, a)ᵀw]

One simple trick is to Taylor expand to the second moment:

Uβ [Ψπ
h (s, a)ᵀw] = EP [Ψπ

h (s, a)ᵀw] +
β

2
VarP [Ψπ

h (s, a)ᵀw] + O(β2)

≈ ψπh (s, a)ᵀw +
β

2
wᵀVarP [Ψπ

h (s, a)]w = Q̃πh,β(s, a)

Reduces to a (simpler) problem of estimating sufficient statistics of the feature

occupancy

20



Risk-Aware GPE

Can generalize GPE to distributions of return:

Qπh,β(s, a) = Uβ

[
T∑
t=h

r(st , πt(st), st+1)

]
= Uβ [Ψπ

h (s, a)ᵀw]

One simple trick is to Taylor expand to the second moment:

Uβ [Ψπ
h (s, a)ᵀw] = EP [Ψπ

h (s, a)ᵀw] +
β

2
VarP [Ψπ

h (s, a)ᵀw] + O(β2)

≈ ψπh (s, a)ᵀw +
β

2
wᵀVarP [Ψπ

h (s, a)]w = Q̃πh,β(s, a)

Reduces to a (simpler) problem of estimating sufficient statistics of the feature

occupancy

20



Risk-Aware GPE

Can generalize GPE to distributions of return:

Qπh,β(s, a) = Uβ

[
T∑
t=h

r(st , πt(st), st+1)

]
= Uβ [Ψπ

h (s, a)ᵀw]

One simple trick is to Taylor expand to the second moment:

Uβ [Ψπ
h (s, a)ᵀw] = EP [Ψπ

h (s, a)ᵀw] +
β

2
VarP [Ψπ

h (s, a)ᵀw] + O(β2)

≈ ψπh (s, a)ᵀw +
β

2
wᵀVarP [Ψπ

h (s, a)]w = Q̃πh,β(s, a)

Reduces to a (simpler) problem of estimating sufficient statistics of the feature

occupancy

20



Risk-Aware GPE

Bellman principle Distributional RL

21



Experiments

22



Domains

Two domains from Barreto et al., 2017:

X G
X

X X
X X

X X
X X

X
S X

Introduce reward volatility:

• traps X for four-room

• action noise + danger zones for reacher

23



Domains

Two domains from Barreto et al., 2017:

X G
X

X X
X X

X X
X X

X
S X

Introduce reward volatility:

• traps X for four-room

• action noise + danger zones for reacher

23



Domains

Two domains from Barreto et al., 2017:

X G
X

X X
X X

X X
X X

X
S X

Introduce reward volatility:

• traps X for four-room

• action noise + danger zones for reacher

23



Four-Room

Train on a sequence of 128 random task instances, for 20,000 steps each

0 1 2 3 4 5 6
−250

0

250

500

Av
er
ag

e
Re

tu
rn RaSFQL

SFQL
RaPRQL
PRQL

24 25 26 27 28 29 30 122 123 124 125 126 127 128
−250

0

250

500

0 1 2 3 4 5 6
0

500

1000

Re
tu
rn

pe
rT

as
k

24 25 26 27 28 29 30 122 123 124 125 126 127 128
0

500

1000

0 1 2 3 4 5 6
0

20

40

60

Fa
ilu

re
s
pe

rT
as
k

24 25 26 27 28 29 30
Task Instance

122 123 124 125 126 127 128
0

20

40

60

24



Four-Room

Train on a sequence of 128 random task instances, for 20,000 steps each

0 1 2 3 4 5 6
−250

0

250

500

Av
er
ag

e
Re

tu
rn RaSFQL

SFQL
RaPRQL
PRQL

24 25 26 27 28 29 30 122 123 124 125 126 127 128
−250

0

250

500

0 1 2 3 4 5 6
0

500

1000

Re
tu
rn

pe
rT

as
k

24 25 26 27 28 29 30 122 123 124 125 126 127 128
0

500

1000

0 1 2 3 4 5 6
0

20

40

60

Fa
ilu

re
s
pe

rT
as
k

24 25 26 27 28 29 30
Task Instance

122 123 124 125 126 127 128
0

20

40

60

24



Four-Room

Train on a sequence of 128 random task instances, for 20,000 steps each

0 1 2 3 4 5 6
−250

0

250

500

Av
er
ag

e
Re

tu
rn RaSFQL

SFQL
RaPRQL
PRQL

24 25 26 27 28 29 30 122 123 124 125 126 127 128
−250

0

250

500

0 1 2 3 4 5 6
0

500

1000

Re
tu
rn

pe
rT

as
k

24 25 26 27 28 29 30 122 123 124 125 126 127 128
0

500

1000

0 1 2 3 4 5 6
0

20

40

60

Fa
ilu

re
s
pe

rT
as
k

24 25 26 27 28 29 30
Task Instance

122 123 124 125 126 127 128
0

20

40

60

24



Four-Room

Sensitivity to β parameter:

0 20 40 60 80 100 120
Task Instance

0

20000

40000

60000

80000

Cu
m
ul
at
iv
e
Re

w
ar
d

RaSFQL(4)
RaSFQL(2)
RaSFQL(1)
RaSFQL(0.5)
SFQL

RaPRQL(4)
RaPRQL(2)
RaPRQL(1)
RaPRQL(0.5)
PRQL

0 20 40 60 80 100 120
Task Instance

0

1000

2000

3000

4000

5000

6000

7000

Cu
m
ul
at
iv
e
Fa

ilu
re
s

RaSFQL(4)
RaSFQL(2)
RaSFQL(1)
RaSFQL(0.5)
SFQL

RaPRQL(4)
RaPRQL(2)
RaPRQL(1)
RaPRQL(0.5)
PRQL

25



Four-Room

Sensitivity to β parameter:

0 20 40 60 80 100 120
Task Instance

0

20000

40000

60000

80000

Cu
m
ul
at
iv
e
Re

w
ar
d

RaSFQL(4)
RaSFQL(2)
RaSFQL(1)
RaSFQL(0.5)
SFQL

RaPRQL(4)
RaPRQL(2)
RaPRQL(1)
RaPRQL(0.5)
PRQL

0 20 40 60 80 100 120
Task Instance

0

1000

2000

3000

4000

5000

6000

7000

Cu
m
ul
at
iv
e
Fa

ilu
re
s

RaSFQL(4)
RaSFQL(2)
RaSFQL(1)
RaSFQL(0.5)
SFQL

RaPRQL(4)
RaPRQL(2)
RaPRQL(1)
RaPRQL(0.5)
PRQL

25



Reacher

Train on four source tasks, test periodically on 8 unseen test tasks:

0 1 2 3 4
Training Task Instance

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

Re
tu
rn

RaSFC51
SFC51

RaC51
C51

0 1 2 3 4
Training Task Instance

0

20

40

60

80

100

120

Fa
ilu

re
s

RaSFC51
SFC51

RaC51
C51

26



Reacher

Train on four source tasks, test periodically on 8 unseen test tasks:

0 1 2 3 4
Training Task Instance

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

Re
tu
rn

RaSFC51
SFC51

RaC51
C51

0 1 2 3 4
Training Task Instance

0

20

40

60

80

100

120

Fa
ilu

re
s

RaSFC51
SFC51

RaC51
C51

26



Reacher

Train on four source tasks, test periodically on 8 unseen test tasks:

0 1 2 3 4
Training Task Instance

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

Re
tu
rn

RaSFC51
SFC51

RaC51
C51

0 1 2 3 4
Training Task Instance

0

20

40

60

80

100

120

Fa
ilu

re
s

RaSFC51
SFC51

RaC51
C51

26



Reacher

Does the agent learn risk-sensitive behavior?

27



Reacher

Does the agent learn risk-sensitive behavior?

27



Reacher

How sensitive is the agent to β? Does the C51 method help in learning SFs?

0 1 2 3 4
Training Task Instance

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

Re
tu
rn

SFC51(4)
SFC51(3)
SFC51(2)
SFC51(1)
SFC51(0)

C51(4)
C51(3)
C51(2)
C51(1)
C51(0)

0 1 2 3 4
Training Task Instance

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

Re
tu
rn

SFC51
SFDQN

28



Reacher

How sensitive is the agent to β? Does the C51 method help in learning SFs?

0 1 2 3 4
Training Task Instance

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

Re
tu
rn

SFC51(4)
SFC51(3)
SFC51(2)
SFC51(1)
SFC51(0)

C51(4)
C51(3)
C51(2)
C51(1)
C51(0)

0 1 2 3 4
Training Task Instance

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

Re
tu
rn

SFC51
SFDQN

28



Conclusion

In conclusion:

• we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer

in domains where tasks have different goals

• we extended generalized policy improvement to the risk-aware setting with

entropic utilities

• we then extended the notion of generalized policy evaluation via the Taylor

expansion of the entropic utility

• together, risk-aware GPI and GPE are shown to inherit the superior task

generalization abilities of successor features, while also learning to avoid risky

situations

29



Conclusion

In conclusion:

• we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer

in domains where tasks have different goals

• we extended generalized policy improvement to the risk-aware setting with

entropic utilities

• we then extended the notion of generalized policy evaluation via the Taylor

expansion of the entropic utility

• together, risk-aware GPI and GPE are shown to inherit the superior task

generalization abilities of successor features, while also learning to avoid risky

situations

29



Conclusion

In conclusion:

• we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer

in domains where tasks have different goals

• we extended generalized policy improvement to the risk-aware setting with

entropic utilities

• we then extended the notion of generalized policy evaluation via the Taylor

expansion of the entropic utility

• together, risk-aware GPI and GPE are shown to inherit the superior task

generalization abilities of successor features, while also learning to avoid risky

situations

29



Conclusion

In conclusion:

• we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer

in domains where tasks have different goals

• we extended generalized policy improvement to the risk-aware setting with

entropic utilities

• we then extended the notion of generalized policy evaluation via the Taylor

expansion of the entropic utility

• together, risk-aware GPI and GPE are shown to inherit the superior task

generalization abilities of successor features, while also learning to avoid risky

situations

29



Conclusion

In conclusion:

• we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer

in domains where tasks have different goals

• we extended generalized policy improvement to the risk-aware setting with

entropic utilities

• we then extended the notion of generalized policy evaluation via the Taylor

expansion of the entropic utility

• together, risk-aware GPI and GPE are shown to inherit the superior task

generalization abilities of successor features, while also learning to avoid risky

situations

29



Conclusion

In conclusion:

• we presented Risk-aware Successor Features (RaSFs) for realizing policy transfer

in domains where tasks have different goals

• we extended generalized policy improvement to the risk-aware setting with

entropic utilities

• we then extended the notion of generalized policy evaluation via the Taylor

expansion of the entropic utility

• together, risk-aware GPI and GPE are shown to inherit the superior task

generalization abilities of successor features, while also learning to avoid risky

situations

29



Thank you.

30


	Introduction
	Preliminaries – Successor Features
	Preliminaries – Risk-Aversion in MDPs using Entropic Utility Functions
	Theory
	Experiments
	Thank you.

