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Our goal

Differential Privacy:
Hide individual details in the noise.
Keep population information clean.

Great success in recent years:

Core question:

Privacy-accuracy trade-off

Many statistics/ML tasks:
Exists (ε, δ)-DP algorithm with error 6 C ·

√
log δ−1

ε · dn
Any (ε, δ)-DP algorithm has error > c ·

√
log δ−1

ε · dn
Our goal: understand the constant, for the simplest problem
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Query answering

Privacy-accuracy trade-off

Query f : D 7→ R or Rd where D is a dataset.
Query answering: evaluate f(D) privately.
Noise addition mechanisms:

- Generate r.v. X
- M(D) = f(D) +X

more privacy ← larger X → less accuracy
(Constant-sharp) Optimal noise under given privacy constraint?
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Quiz: 1-dim
M(D) = f(D) +X.

Accuracy is measured by Var[X].
Question: What noise for (ε, 0)-DP?
Textbook: Laplace noise [DMNS 06]

Var[X] = 2
ε2

Question: What if we relax by δ?
Textbook: Gaussian noise [DKMMN 06]

Var[X] = 2
ε2 · log(1.25δ−1) > 2

ε2
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Quiz: 1-dim
M(D) = f(D) +X.

Accuracy is measured by Var[X].
Question: What noise for (ε, 0)-DP?
Everyone: Laplace noise [DMNS 06]

Var[X] = 2
ε2

Question: What if we relax by δ?
Everyone: Gaussian noise [DKMMN 06]

Var[X] = 2
ε2 · log(1.25δ−1) > 2

ε2

(ε, δ) done right: truncated Laplace [GDGK 18]

Truncate at ±h with h = log(1 + eε−1
2δ ).

Var[X] = 2
ε2 ·

(
1− ε2h(h+ 2)

eh − 1

)
<

2
ε2
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It took 12 years...

This is a fundamental problem.
We need a mindset that makes it simple.
Here’s how I visualize and reason about it.
But we need a slightly more advanced perspective.
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Recall: What is Differential Privacy?

Definition (DMNS 06, DKMMN 06)
A randomized algorithm M : X → Y is (ε, δ)-DP if

P[M(D′) ∈ E] 6 eεP[M(D) ∈ E] + δ

E ⊆ Y is any event.
D and D′ are arbitrary neighboring databases that differ by one
person
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M(D) = f(D) +N(0, σ2), σ small
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“Functional” perspective

“M(D) ≈M(D′)”

“Functional” perspective: A “true” δ for each ε

δ(ε) = Heε

(
M(D)‖M(D′)

)
: R>0 → [0, 1]

T
[
M(D),M(D′)

]
: [0, 1]→ [0, 1] ([DRS 19])

0 1

1

indistinguishable

Example of T [M(D),M(D′)] Equivalent via primal-dual

Interpretation: FP vs FN in
binary classification D vs D′

Larger = more privacy

[WZ 10, KOV 15, DRS 19]:
M is (ε, δ)-DP iff
T
[
M(D),M(D′)

]︸ ︷︷ ︸
ROC function

> fε,δ
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Back to the quiz

M(D) = f(D) +X

X Privacy Var[X]
Laplace (ε, 0) 2/ε2

Gaussian (ε, δ) > 2/ε2

Truncated Laplace (ε, δ) < 2/ε2

Understand this by comparing

fε,δ = budget of privacy
ROC = actual spend by mechanism

Which X makes good use of the budget?
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Back to the quiz
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Truncation creates a δ
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Zoom in comparision

0 1

1

(ε, δ)

Truncated Laplace

Gaussian

Want to achieve better
accuracy?
Try to make good use
of your privacy budget.
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What if d� 1?

Consider noise-addition mechanisms in Rd

M(D) = f(D) +X.

Q: How to choose noise X to fit (ε, δ) budget?
A: No way!

Theorem (Informal CLT, this work)

When d� 1, for many X,

ROC of M ≈ ROC of Gaussian 6= fε,δ
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Details of the statement of CLT

Consider the mechanism M(D) = f(D) +X where X is
log-concave with density ∝ e−ϕ(x) where ϕ is convex.
WLOG f has `2 sensitivity 1, i.e. ‖f(D)− f(D′)‖ 6 1
WLOG f(D) = 0, f(D′) = v where ‖v‖ = 1, hence

T [M(D),M(D′)] = T [X,X + v].
“ROC of M ≈ ROC of Gaussian”

T [X,X + v] ≈ T [G,G+ v]

where G = N(0,Σ) is some Gaussian.
Normalization:

Textbook CLT:
∑
Xi ≈

∑
Gi if EX = EG and Var[X] = Var[G].

Our CLT:

T [X,X + v] ≈ T [G,G+ v] if IX = IG

where IX = E∇ϕ(X)∇ϕ(X)T is the d× d Fisher information
matrix.
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Details of the statement of CLT, cont’d.

T [X,X + v] ≈ T [G,G+ v] if IX = IG (1)

Remember this is a high-dimensional phenomenon
Unfortunately, high-dimensional DP algorithm can exhibit 1-d
behavior
When v = (1, 0, . . . , 0), T [X,X + v] = T [X1, X1 + 1] where X1 ∈ R.
Solution: exclude a small fraction of v, i.e. (1) holds w.h.p over
v ∼ Sd−1.
For what X?

density ∝ exp(−‖Ux‖αp ) where p, α ∈ [1,+∞), U orthogonal

Call this class of densities F .
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Statement and proof idea

Theorem (CLT, this work)
For X with densities in F and IX = Id×d, w.p. > 1− o(1) over
v ∼ Sd−1,

‖T [X,X + v]− T [G,G+ v]‖∞ 6 o(1),

where G is Gaussian such that IG = IX = Id×d.

Proof idea:

Theorem ([V.N.Sudakov 1978])
If X is an isotropic r.v. in Rd and satisfies “thin shell” condition, then w.p. 1− o(1) over
v ∼ Sd−1, 〈X, v〉 ≈ N(0, 1).

We show that an analog of Sudakov’s theorem holds for a nonlinear projection of X
that we call “likelihood projection”
Our CLT follows easily from this “nonlinear Sudakov”.
Conjectured to be extendable to general log-concave distributions with proper
regularity.
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Some numerical results
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Figure 1: Numerical evaluation of ROC functions
for noise addition mechanism M(D) = f(D) +X
X has density ∝ e−ϕ(x)

Dimension d = 30.
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So far...

For d = 1, truncated Laplace fits (ε, δ) budget better and has
smaller variance than Gaussian.
For d� 1, no hope to fit (ε, δ). Everything works like Gaussian.

d = 1

0 1

1

d� 1

0 1

1
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Privacy-Accuracy Trade-off

(ε, δ) and d� 1 don’t really work together.
Why not use Gaussian instead of (ε, δ) to measure privacy?
Exactly what [D-Roth-Su 19] did
µ-GDP ⇔ T [X,X + v] >�

�fε,δ T [N(0, 1), N(µ, 1)]
By CLT, T [X,X + v] ≈ T [G,G+ v]
By linear algebra, T [G,G+ v] = T [N(0, 1), N(µ, 1)] with
µ2 = vTIGv.
Worst case over v ∈ Sd−1: µ2 = ‖IG‖ = ‖IX‖.
That is, adding X is roughly µ-GDP with µ2 = ‖IX‖.
By Cramer–Rao,

E‖X‖22 · ‖IX‖ > d.

i.e. mean-squared error satisfies
errM · µ2 > d

= holds for Gaussian mechanism.
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Privacy-Accuracy Trade-off, Cont’d

CLT + Cramer–Rao yields

errM · µ2 > d

Compared to previously known lower bounds, e.g. [Steinke-Ullman 17]

errM ·
ε2

log δ−1 = Ω (d)

No mysterious constant.
Equality is precisely achievable by Gaussian mechanism.
Privacy parameter makes more sense, e.g. avoids “δ → 0
blowing-up” problem
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Summary

CLT: d = 1 and d� 1 are drastically different.
CLT + Cramer–Rao: errM · µ2 > d

d = 1
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Future directions

Generalize CLT to log-concave distributions?
To distributions with bounded support?
Gap between “almost all v” and “all v”?
Other high-dimensional phenomenon in DP? Constant-sharp lower
bound there?
In particular, what if we consider `∞ error instead of `2 error?
Constant-sharp optimality of [Dagan-Kur 20]?
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THE END

Thank you!
More on [DRS 19]: my blog at dongjs.github.io

@JinshuoD
@zlj11112222
@weijie444
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