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e Differential Privacy:

Hide individual details in the noise.
Keep population information clean.

e Great success in recent years:
~7 ’ ﬁ =.

e Core question:
Privacy-accuracy trade-off

e Many statistics/ML tasks:
o Exists (e,0)-DP algorithm with error < C - ¥ logd ™" | %

S

o Any (&,9)-DP algorithm has error > ¢ - < 1055_1 : %

@ Our goal: understand the constant, for the simplest problem
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Query answering

Privacy-accuracy trade-off

o Query f: D — R or R? where D is a dataset.

e Query answering: evaluate f(D) privately.
@ Noise addition mechanisms:
- Generate r.v. X

_ M(D)= f(D)+ X
@ more privacy < larger X — less accuracy

e (Constant-sharp) Optimal noise under given privacy constraint?

Jinshuo Dong CLT + Cramer—Rao in DP



M (D) = f(D) + X.
@ Accuracy is measured by Var|[X].
e Question: What noise for (g,0)-DP?
e Textbook: Laplace noise [DMNS 06]
Var[X] = ;2
@ Question: What if we relax by 47
e Textbook: Gaussian noise [DKMMN 06]

2 2
Var| X| = 2 -log(1.256 1) > =

\
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M(D) = f(D)+ X.
@ Accuracy is measured by Var|[X].
@ Question: What noise for (¢,0)-DP?
e Everyone: Laplace noise [DMNS 06]
2
V&I'[X] = 5_2
e Question: What if we relax by 07
e Everyone: Gaussian noise [DKMMN 06]
2 2
Var|X] = = -log(1.2567°) > 2
@ (g,0) done right: truncated Laplace [GDGK 18]
Truncate at +h with h = log(1 + 682—31)
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It took 12 years...

@ This is a fundamental problem.
@ We need a mindset that makes it simple.
@ Here’s how I visualize and reason about it.

e But we need a slightly more advanced perspective.
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Recall: What is Differential Privacy?

Definition (DMNS 06, DKMMN 06)
A randomized algorithm M : X — Y is (g,d)-DP if
PM(D') € E] < P[M(D) € E] +§

e I CY is any event.
e D and D’ are arbitrary neighboring databases that differ by one

person

. M(D) = f(D) + N(0,0?), 0 small
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“Functional” perspective

“M(D) ~ M(D')”

e “Functional” perspective: A “true” ¢ for each ¢

5(e) = Hee (M(D)||M(D')) : Rsg — [0, 1]

Example of T[M (D), M(D'")]

0
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Equivalent via primal-dual

Interpretation: FP vs FN in
binary classification D vs D’

Larger = more privacy

[WZ 10, KOV 15, DRS 19]:
M is (g,9)-DP iff

T[M(D), M(D)] > f..4

4

ROC function




“Functional” perspective

“M(D) ~ M(D')”

e “Functional” perspective: A “true” ¢ for each ¢

5(e) = Hee (M(D)||M(D')) : Rsg — [0, 1]

T[M(D),M(D")] :[0,1] — [0,1]

Example of T[M (D), M(D'")]
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([DRS 19))

Equivalent via primal-dual

Interpretation: FP vs FN in
binary classification D vs D’

Larger = more privacy

[WZ 10, KOV 15, DRS 19]:
M is (g,0)-DP iff

T[M(D), M(D)] > f..4
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ROC function




“Functional” perspective

“M(D) ~ M(D')”

e “Functional” perspective: A “true” ¢ for each e
6(¢) = Hee (M(D)||M(D")) : Rsg — [0,1]
T[M(D),M(D")]:[0,1] = [0,1]  ([DRS 19])

o Equivalent via primal-dual

~—intercept ¢
N\

— Jeo

e Interpretation: FP vs FN in
binary classification D vs D’

e Larger = more privacy

[WZ 10, KOV 15, DRS 19):
M is (e,6)-DP iff
T|M(D),M(D")] > fes

7

> ROC function
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“Functional” perspective

“M(D) ~ M(D')”

e “Functional” perspective: A “true” ¢ for each ¢
0(¢) = Hee (M(D)||M(D")) : Rsg — [0,1]
T[M(D), M(D)] :[0,1] —[0,1]  ([DRS 19])

Is (g,0)-DP o Equivalent via primal-dual

A\ — T[M(D),M(D")] e Interpretation: FP vs FN in
AR binary classification D vs D’

\ . e Larger = more privacy

\ N [WZ 10, KOV 15, DRS 19]:
\ . M is (g,9)-DP iff
\ \’\ T[M(D%M(D/)} 2 fs,é

\\
\\\\\ '\. N\ >
\\\ VO
S \. ROC function
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“Functional” perspective

“M(D) ~ M(D')”

e “Functional” perspective: A “true” ¢ for each ¢
0(¢) = Hee (M(D)||M(D")) : Rsg — [0,1]
T[M(D), M(D)] :[0,1] —[0,1]  ([DRS 19])

Not (g, 8)-DP o Equivalent via primal-dual

S — T[M(D), M(D")] e Interpretation: FP vs FN in
R binary classification D vs D’

\ . e Larger = more privacy

\ AN [WZ 10, KOV 15, DRS 19):
\ . M is (g,9)-DP iff
[N T[M(D), M(D")] > f..s

'\~ (. /

I~ N~
~~~~ \, ROC function
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Back to the quiz

M(D)=f(D)+ X

X Privacy | Var[X]

Laplace (€,0) 2/e?
Gaussian (6,6) | >2/&?
Truncated Laplace | (g,8) | < 2/&?

@ Understand this by comparing

Je,s = budget of privacy
ROC = actual spend by mechanism

@ Which X makes good use of the budget?
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Back to the quiz

1
M(D) = /(D) + Lap(0,=™") " (&0)
0.5 1 —— Laplace
M(D) M(D') —
0.0 l l \
0 1 N
Var[X] = E%
0 1
1
_ 2 -=== (g,9)
M(D) = £(D) + N(0,0?)
0.50 —— Gaussian
025 1 M(D) M(D')
—
0.00 T T
0 1
Var[X] > &
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Truncation creates a o

1
. = (20)
M(D) = f(D) + Lap(0,e™")
0.5 4 —— Laplace
M(D) M(D) N
0.0 l l \
0 1 N
Var[X] = 522
0 1
1
hiq -1 -=== (&,9)
M(D) = f(D) 4 Lap"(0,e™")
0.5 - Truncated
. Laplace
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Zoom in comparision

- (@)
—— Truncated Laplace

—— Gaussian

e Want to achieve better
accuracy?

e Try to make good use
of your privacy budget.
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What if d > 17

Consider noise-addition mechanisms in R?

e Q: How to choose noise X to fit (¢,d) budget?
e A: No way!

Theorem (Informal CLT, this work)
When d > 1, for many X,

ROC of M ~ ROC of Gaussian # f; s
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Details of the statement of CLLT

e Consider the mechanism M (D) = f(D) + X where X is
log-concave with density o e=#(*) where ¢ is convex.

e WLOG f has #5 sensitivity 1, i.e. || f(D) — f(D")|| <1

e WLOG f(D) =0, f(D") = v where ||v|| =1, hence
TIM(D),M(D")] =T[X,X +].

e “ROC of M ~ ROC of Gaussian”

TIX, X +v] ~ T[G, G + 1]

where G = N(0,Y) is some Gaussian.

@ Normalization:
o Textbook CLT: Y X, ~ > G, if EX = EG and Var[X]| = Var|G].
e Our CLT:

T[X,X—I—U]%T[G,G—FU] if Ix :IG

where Zxy = EVp(X)Vp(X)? is the d x d Fisher information
matrix.
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Details of the statement of CLT, cont’d.

TX, X +v]|=T|G,G+v] if Ix=1ZIg (1)

@ Remember this is a high-dimensional phenomenon

e Unfortunately, high-dimensional DP algorithm can exhibit 1-d
behavior

® When v = (1,0,...,0), T|X, X +v] = T[X1, X7 + 1] where X; € R.

@ Solution: exclude a small fraction of v, i.e. (1) holds w.h.p over
v~ S,

e For what X7
density o exp(—||Ux||];) where p,a € [1,+00),U orthogonal

Call this class of densities F.
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Statement and proof idea

Theorem (CLT, this work)
For X with densities in F and Ix = Ijxq, w.p. =1 —o0(1) over
U~ Sd_l,

|T[X, X + ] = TG, G + v][|os < o0(1),

where G is Gaussian such that I = Ix = Ijx4.

Proof idea:

Theorem ([V.N.Sudakov 1978])

If X is an isotropic r.v. in R% and satisfies “thin shell” condition, then w.p. 1 — o(1) over
v~ S (X, v) =~ N(0,1).

@ We show that an analog of Sudakov’s theorem holds for a nonlinear projection of X
that we call “likelihood projection”

@ Our CLT follows easily from this “nonlinear Sudakov”.

@ Conjectured to be extendable to general log-concave distributions with proper
regularity.
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Some numerical results
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Figure 1: Numerical evaluation of ROC functions
for noise addition mechanism M (D) = f(D) + X
X has density o< e=¢(®)
Dimension d = 30.
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e For d = 1, truncated Laplace fits (¢,d) budget better and has
smaller variance than Gaussian.

e For d > 1, no hope to fit (g,9). Everything works like Gaussian.

d=1 d>1
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Privacy-Accuracy Trade-oft

(€,0) and d > 1 don’t really work together.

Why not use Gaussian instead of (¢,§) to measure privacy?
Exactly what [D-Roth-Su 19] did

p-GDP & T[X, X +v] > fe5 TIN(0,1), N(p,1)]

o By CLT, T'X, X +v]| = T|G, G + v

e By linear algebra, T'|G,G 4+ v| = T[N (0,1), N(u,1)] with
p? = vl Zg.

o Worst case over v € S971: 1% = || Zg|| = || Zx]||-
e That is, adding X is roughly pu-GDP with p? = || Zx]|.
e By Cramer—Rao,
EIX)3 - 1Zx || > d.
@ i.e. mean-squared error satisfies
errpr - 12 > d

@ = holds for Gaussian mechanism.
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Privacy-Accuracy Trade-off, Cont’d

CLT + Cramer—Rao yields
errpy - p2 > d

Compared to previously known lower bounds, e.g. [Steinke-Ullman 17]

82

log 61

= Q(d)

eIrrps -

@ No mysterious constant.
e Equality is precisely achievable by Gaussian mechanism.

@ Privacy parameter makes more sense, e.g. avoids “60 — 0
blowing-up” problem
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@ CLT: d=1 and d > 1 are drastically different.
o CLT + Cramer-Rao: erry; - u? > d

d=1 d>1
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Future directions

@ Generalize CLT to log-concave distributions?
e To distributions with bounded support?
e Gap between “almost all v” and “all v”7?

@ Other high-dimensional phenomenon in DP? Constant-sharp lower
bound there?

e In particular, what if we consider ¢, error instead of ¢y error?
Constant-sharp optimality of [Dagan-Kur 20)?
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THE END

Thank youl

@ More on [DRS 19]: my blog at dongjs.github.io

@JinshuoD
@z1j11112222
Q@weijied444
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