Scaling Neural Tangent Kernels via Sketching and Random Features

Insu Han

Yale University

Joint work with Amir Zandieh, Haim Avron,

Neta Shoham, Chaewon Kim, Jinwoo Shin

Outline

Introduction

- Kernel Regression
- Neural Tangent Kernel
- Existing Work

NTK Feature Map Construction

- Exact NTK Computation
- NTK Random Features
- NTK Sketch

Experiments

- Classification on MNIST datasets
- Classification on CIFAR-10 datasets

Conclusion

Outline

Introduction

- Kernel Regression
- Neural Tangent Kernel
- Existing Work

NTK Feature Map Construction

- Exact NTK Computation
- NTK Random Features
- NTK Sketch

Experiments

- Classification on MNIST datasets
- Classification on CIFAR-10 datasets

Conclusion

Kernel Regression

Kernel: a similarity function over pairs of data points in raw representation

– Mercer decomposition: for every kernel $K:\mathbb{R}^d imes\mathbb{R}^d o\mathbb{R}$ and $m{x},m{x}'\in\mathbb{R}^d$

$$K(\boldsymbol{x}, \boldsymbol{x}') = \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x}') \rangle$$

- ϕ is called a feature map

Kernel Regression

Kernel: a similarity function over pairs of data points in raw representation

– Mercer decomposition: for every kernel $K:\mathbb{R}^d imes\mathbb{R}^d o\mathbb{R}$ and $m{x},m{x}'\in\mathbb{R}^d$

$$K(\boldsymbol{x}, \boldsymbol{x}') = \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x}') \rangle$$

- ϕ is called a feature map

Kernel ridge regression:

$$\boldsymbol{w}^* = \underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \phi(\boldsymbol{x}_i)^{\top} \boldsymbol{w})^2 + \lambda \|\boldsymbol{w}\|_2^2$$

 Simple and yet powerful tool for learning non-linear relationships between data points

Scalability of Kernel Methods

Kernel methods are expensive

- Computing all kernel entries take $\Omega(n \cdot \text{nnz}(\boldsymbol{X}) + n^2)$ time
- Even writing it down takes $\Omega(n^2d)$ time and $\Omega(n^2)$ memory
- A single iteration of a linear system solver takes $\Omega(n^2)$ time
- For n=100,000, \boldsymbol{K} has 10 billion entries. Take 80 GB of storage!

Classical Solution: Dimensionality Reduction

Storing Z uses $\mathcal{O}(ns)$ space and computing $Z^{\top}Zx$ takes $\mathcal{O}(ns)$ time Orthogonalization, eigen-decomposition and pseudo-inversion of $Z^{\top}Z$ all take just $\mathcal{O}(ns^2)$ time

Neural Tangent Kernel (NTK)

Kernel: a similarity function over pairs of data points in raw representation

– Mercer kernel is a function $K:\mathbb{R}^d imes\mathbb{R}^d o\mathbb{R}$ such that for $m{x},m{x}'\in\mathbb{R}^d$

$$K(\boldsymbol{x}, \boldsymbol{x}') = \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x}') \rangle$$

- ϕ is called a feature map (can be a random function)

Tangent kernel:

– For a smooth function $f(\cdot,\theta)$, tangent kernel is an inner-product of gradient at a fixed θ_0 :

$$K_T(\boldsymbol{x}, \boldsymbol{x}'; \theta_0) = \left\langle \frac{\partial f(\boldsymbol{x}, \theta)}{\partial \theta} \bigg|_{\theta = \theta_0}, \frac{\partial f(\boldsymbol{x}', \theta)}{\partial \theta} \bigg|_{\theta = \theta_0} \right\rangle$$

Fully-connected neural network:

$$f(\boldsymbol{x}, \theta) = \boldsymbol{h}_L^{\top} \boldsymbol{w}_L, \quad \boldsymbol{h}_{\ell} = \frac{c_{\sigma}}{\sqrt{d_{\ell}}} \sigma(\boldsymbol{h}_{\ell-1}^{\top} \boldsymbol{W}_{\ell}), \quad \boldsymbol{h}_0 = \boldsymbol{x}$$

- $\theta = (\boldsymbol{W}_1, \dots, \boldsymbol{w}_L)$: trainable parameters
- $c_{\sigma} = 1/\mathbb{E}_{z \sim \mathcal{N}}[\sigma(z)^2]$: normalization for activation

Neural Tangent Kernel [JGH18][LXS+19]:

$$K_{ ext{NTK}}(oldsymbol{x},oldsymbol{x}') = \mathbb{E}_{ heta \sim \mathcal{N}} \left\langle rac{\partial f(oldsymbol{x}, heta)}{\partial heta}, rac{\partial f(oldsymbol{x}', heta)}{\partial heta}
ight
angle$$

$$\boldsymbol{w}_L \mathbf{O} f(\boldsymbol{x},$$

Under infinite width regime, neural network is equivalent to NTK

- Prediction of neural networks trained under ℓ_2 -loss by gradient flow
- NTK solved by kernel regression

$$y_{\text{test}} = K_{\text{NTK}}(\boldsymbol{x}_{\text{test}}, \boldsymbol{X}) K_{\text{NTK}}(\boldsymbol{X}, \boldsymbol{X})^{-1} \boldsymbol{y}$$

for training data $oldsymbol{X} = [oldsymbol{x}_1, \dots, oldsymbol{x}_n]^{ op}, oldsymbol{y} \in \mathbb{R}^n$

– No need to learn parameter θ if $K_{\mathrm{NTK}}(\cdot)$ is given

NTK is useful both in theory and practice:

- Generalization [CG19], optimization [ALS19], regularization [HLY20]
- In practice, NTK can perform better regression results than training neural networks (NN) [ADL+19]

Classifier	Friedman Rank	Average Accuracy	P90	P95	PMA	
NTK	$28.34 \hspace{1.5cm} 81.95\% \pm 14.10\% \hspace{1.5cm} 88$		88.89%	72.22%	$95.72\%\ \pm 5.17\%$	
NN (He init)	40.97	$80.88\% \pm 14.96\%$	81.11%	65.56%	$94.34\%\ \pm7.22\%$	
NN (NTK init)	38.06	$81.02\% \pm 14.47\%$	85.56%	60.00%	$94.55\%\ \pm 5.89\%$	
RF	33.51	$81.56\% \pm 13.90\%$	85.56%	67.78%	$95.25\% \pm 5.30\%$	
Gaussian Kernel	35.76	$81.03\% \pm 15.09\%$	85.56%	72.22%	$94.56\% \pm 8.22\%$	
Polynomial Kernel	38.44	$78.21\% \pm 20.30\%$	80.00%	62.22%	$91.29\%\ \pm 18.05\%$	

Comparisons of different classifiers on 90 UCI datasets [ADL+19]

NTK is useful both in theory and practice:

- Generalization [CG19], optimization [ALS19], regularization [HLY20]
- In practice, NTK can perform better regression results than training neural networks (NN) [ADL+19]

Computational issues:

- Even NTK can be computed exactly [ADH+19], solving kernel regression requires $\mathcal{O}(n^3)$ time \Rightarrow infeasible for large n
- Convolution NTK (CNTK) with $h \times W$ images takes $\Omega(n^2h^2w^2)$ time E.g., Convolutional NTK with CIFAR-10 \geq **1000** GPU hours [SFG+20]

NTK is useful both in theory and practice:

- Generalization [CG19], optimization [ALS19], regularization [HLY20]
- In practice, NTK can perform better regression results than training neural networks (NN) [ADL+19]

Computational issues:

– Even NTK can be computed exactly [ADH+19], solving kernel regression requires $\mathcal{O}(n^3)$ time \Rightarrow infeasible for large n

Kernel approximation by feature map:

$$K_{\mathrm{NTK}}(\boldsymbol{x}, \boldsymbol{x}') \approx \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x}') \rangle, \qquad \phi : \mathbb{R}^d \to \mathbb{R}^m$$

- Kernel ridge regression can be solved in $\mathcal{O}(nm^2 + m^3)$ time
- Memory complexity can be $\mathcal{O}(nm + m^2)$
- Usually, $m \ll n$

Existing Work

Goal: feature map construction ϕ such that $K_{\mathrm{NTK}}^{(L)}(\boldsymbol{x}, \boldsymbol{x}') \approx \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x}') \rangle$

Gradient features of finitely wide network:

$$K_{ ext{NTK}}(m{x}, m{x}') := \underset{ heta' \sim \mathcal{N}}{\mathbb{E}} \left\langle \frac{\partial f(m{x}, heta')}{\partial heta}, \frac{\partial f(m{x}', heta')}{\partial heta} \right
angle \qquad ext{(Definition)}$$
 $pprox rac{1}{s} \sum_{i=1}^{s} \left\langle \frac{\partial f(m{x}, heta_i)}{\partial heta}, \frac{\partial f(m{x}', heta_i)}{\partial heta}
ight
angle$

- $\theta_1, \ldots, \theta_s$: random samples from Gaussian distribution
- Gradient features show poor performances in practice [ADH+19]

Contributions

Fast and accurate NTK approximation using Random Features/Sketching

	Feature dimension	Runtime	
Gradient Features [ADH+19]	$\widetilde{\Omega}\left(rac{L^{13}}{arepsilon^8} ight)$	$\widetilde{\Omega}\left(\frac{L^{13}}{\varepsilon^8}\right)$	
NTK Random Features (Our)	$\widetilde{\mathcal{O}}\left(rac{L^6}{arepsilon^4} ight)$	$\widetilde{\mathcal{O}}\left(rac{L^{13}}{arepsilon^8} ight)$	
NTK Sketch (Our)	$\mathcal{O}\left(\frac{1}{arepsilon^2}\log \frac{1}{\delta}\right)$	$\widetilde{\mathcal{O}}\left(\frac{L^{11}}{\varepsilon^{6.7}} + \frac{L^3}{\varepsilon^2}d\right)$	
CNTK Sketch (Our)	$\mathcal{O}\left(\frac{1}{arepsilon^2}\log \frac{1}{\delta}\right)$	$\widetilde{\mathcal{O}}\left(\frac{L^{11}}{\varepsilon^{6.7}}\cdot (d_1d_2)\right)$	

*CNTK with $d_1 \times d_2$ images

- For all methods, the runtime of kernel regression reduces from $\mathcal{O}(n^3 + n^2 d)$ to $\mathcal{O}(n(\mathtt{dimension}^2 + \mathtt{runtime}))$
- For n images, the exact CNTK can be computed in $\mathcal{O}\left(n^2Ld_1^2d_2^2\right)$ time while CNTK Sketch runs in $\widetilde{\mathcal{O}}\left(nL^{11}d_1d_2\left/\,\varepsilon^{6.7}\right)$ time

Contributions

Fast and accurate NTK approximation using Random Features/Sketching

	Feature dimension	Runtime	
Gradient Features [ADH+19]	$\widetilde{\Omega}\left(rac{L^{13}}{arepsilon^8} ight)$	$\widetilde{\Omega}\left(\frac{L^{13}}{\varepsilon^8}\right)$	
NTK Random Features (Our)	$\widetilde{\mathcal{O}}\left(rac{L^6}{arepsilon^4} ight)$	$\widetilde{\mathcal{O}}\left(rac{L^{13}}{arepsilon^8} ight)$	
NTK Sketch (Our)	$\mathcal{O}\left(\frac{1}{arepsilon^2}\log \frac{1}{\delta}\right)$	$\widetilde{\mathcal{O}}\left(\frac{L^{11}}{\varepsilon^{6.7}} + \frac{L^3}{\varepsilon^2}d\right)$	
CNTK Sketch (Our)	$\mathcal{O}\left(\frac{1}{arepsilon^2}\log \frac{1}{\delta}\right)$	$\widetilde{\mathcal{O}}\left(\frac{L^{11}}{\varepsilon^{6.7}}\cdot (d_1d_2)\right)$	

*CNTK with $d_1 \times d_2$ images

Better performance than other heuristics under real-world datasets

- NTK Sketch with L=3 achieves 72% of test accuracy of CIFAR-10 while the exact NTK, CNN achieve 70%, 64%, respectively
- CNTK Sketch is 190 times faster than the exact CNTK

Outline

Introduction

- Kernel Regression
- Neural Tangent Kernel
- Existing Work

NTK Feature Map Construction

- Exact NTK Computation
- NTK Random Features
- NTK Sketch

Experiments

- Classification on MNIST datasets
- Classification on CIFAR-10 datasets

Conclusion

Exact NTK Computation

NTK with ReLU activation [ADH+19]: for layer $\ell = 1, \dots, L$ and $x \in \mathbb{R}^d$

$$K_{\mathrm{NTK}}^{(\ell)}(\boldsymbol{x},\boldsymbol{x}') = K_{\mathrm{NTK}}^{(\ell-1)}(\boldsymbol{x},\boldsymbol{x}') \cdot \dot{\boldsymbol{\Sigma}}^{(\ell)}(\boldsymbol{x},\boldsymbol{x}') + \boldsymbol{\Sigma}^{(\ell)}(\boldsymbol{x},\boldsymbol{x}')$$
 where $K_{\mathrm{NTK}}^{(0)}(\boldsymbol{x},\boldsymbol{x}') = \langle \boldsymbol{x},\boldsymbol{x}' \rangle$

Exact NTK Computation

NTK with ReLU activation [ADH+19]: for layer $\ell = 1, \dots, L$ and $x \in \mathbb{R}^d$

$$K_{\mathrm{NTK}}^{(\ell)}(\boldsymbol{x},\boldsymbol{x}') = K_{\mathrm{NTK}}^{(\ell-1)}(\boldsymbol{x},\boldsymbol{x}') \cdot \dot{\Sigma}^{(\ell)}(\boldsymbol{x},\boldsymbol{x}') + \underline{\Sigma^{(\ell)}(\boldsymbol{x},\boldsymbol{x}')}$$
 where $K_{\mathrm{NTK}}^{(0)}(\boldsymbol{x},\boldsymbol{x}') = \langle \boldsymbol{x},\boldsymbol{x}' \rangle$

 $-\dot{\Sigma}^{(\ell)}, \Sigma^{(\ell)}$ can be expressed as a closed-form formula using $\Sigma^{(\ell-1)}$

$$\dot{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') = 1 - \frac{1}{\pi} \cos^{-1} \alpha^{(\ell)} \qquad \qquad \Sigma^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') = \|\boldsymbol{x}\|_2 \|\boldsymbol{x}'\|_2 g(\alpha^{(\ell)})$$

$$\alpha^{(\ell)} = \frac{\Sigma^{(\ell-1)}(\boldsymbol{x}, \boldsymbol{x}')}{\sqrt{\Sigma^{(\ell-1)}(\boldsymbol{x}, \boldsymbol{x})\Sigma^{(\ell-1)}(\boldsymbol{x}', \boldsymbol{x}')}} \quad g(x) = \frac{\sqrt{1 - x^2} + (\pi - \cos^{-1}(x))x}{\pi}$$

NTK with ReLU activation [ADH+19]: for layer $\ell = 1, \dots, L$ and $x \in \mathbb{R}^d$

$$K_{ ext{NTK}}^{(\ell)}(oldsymbol{x},oldsymbol{x}') = K_{ ext{NTK}}^{(\ell-1)}(oldsymbol{x},oldsymbol{x}') \cdot \dot{\Sigma}^{(\ell)}(oldsymbol{x},oldsymbol{x}') + oldsymbol{\Sigma}^{(\ell)}(oldsymbol{x},oldsymbol{x}')$$

A key approach:

- If
$$\dot{\Sigma}^{(\ell)}(m{x},m{x}') = \langle {m{\Lambda}^{(\ell)}},{m{\Lambda}^{(\ell)}}'
angle$$
 and $\overline{\Sigma^{(\ell)}(m{x},m{x}')} = \langle {m{\Psi}^{(\ell)}},{m{\Psi}^{(\ell)}}'
angle$

NTK with ReLU activation [ADH+19]: for layer $\ell = 1, \dots, L$ and $\boldsymbol{x} \in \mathbb{R}^d$

$$K_{ ext{NTK}}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') = K_{ ext{NTK}}^{(\ell-1)}(\boldsymbol{x}, \boldsymbol{x}') \cdot \dot{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') + \boldsymbol{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}')$$

A key approach:

- If
$$\dot{\Sigma}^{(\ell)}(m{x},m{x}') = \langle {m{\Lambda}^{(\ell)}},{m{\Lambda}^{(\ell)}}'
angle$$
 and $\overline{\Sigma^{(\ell)}(m{x},m{x}')} = \langle {m{\Psi}^{(\ell)}},{m{\Psi}^{(\ell)}}'
angle$

$$\begin{split} K_{\mathrm{NTK}}^{(1)}(\boldsymbol{x}, \boldsymbol{x}') &= K_{\mathrm{NTK}}^{(0)}(\boldsymbol{x}, \boldsymbol{x}') \cdot \langle \boldsymbol{\Lambda}^{(1)}, \boldsymbol{\Lambda}^{(1)'} \rangle + \langle \boldsymbol{\Psi}^{(1)}, \boldsymbol{\Psi}^{(1)'} \rangle \\ &= \langle \boldsymbol{x}, \boldsymbol{x}' \rangle \cdot \langle \boldsymbol{\Lambda}^{(1)}, \boldsymbol{\Lambda}^{(1)'} \rangle + \langle \boldsymbol{\Psi}^{(1)}, \boldsymbol{\Psi}^{(1)'} \rangle \\ &= \left\langle [\boldsymbol{x} \otimes \boldsymbol{\Lambda}^{(1)}, \ \boldsymbol{\Psi}^{(1)}], [\boldsymbol{x}' \otimes \boldsymbol{\Lambda}^{(1)'}, \ \boldsymbol{\Psi}^{(1)'}] \right\rangle \quad \otimes : \text{tensor product} \end{split}$$

NTK with ReLU activation [ADH+19]: for layer $\ell = 1, \dots, L$ and $x \in \mathbb{R}^d$

$$K_{\mathrm{NTK}}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') = K_{\mathrm{NTK}}^{(\ell-1)}(\boldsymbol{x}, \boldsymbol{x}') \cdot \dot{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') + \underline{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}')$$

A key approach:

- If
$$\dot{\Sigma}^{(\ell)}(m{x},m{x}') = \langle {m{\Lambda}^{(\ell)}},{m{\Lambda}^{(\ell)}}'
angle$$
 and $\underline{\Sigma^{(\ell)}}(m{x},m{x}') = \langle {m{\Psi}^{(\ell)}},{m{\Psi}^{(\ell)}}'
angle$ $m{\Phi}^{(\ell)} = [m{\Phi}^{(\ell-1)} \otimes {m{\Lambda}^{(\ell)}}, \ {m{\Psi}^{(\ell)}}], \quad m{\Phi}^{(0)} = m{x}$

such that
$$K_{\mathrm{NTK}}^{(\ell)}(m{x},m{x}') = \langle {m{\Phi}^{(\ell)}},{m{\Phi}^{(\ell)}}'
angle$$

 \otimes : tensor product

NTK with ReLU activation [ADH+19]: for layer $\ell = 1, \dots, L$ and $x \in \mathbb{R}^d$

$$K_{ ext{NTK}}^{(\ell)}(oldsymbol{x},oldsymbol{x}') = K_{ ext{NTK}}^{(\ell-1)}(oldsymbol{x},oldsymbol{x}') \cdot \dot{\Sigma}^{(\ell)}(oldsymbol{x},oldsymbol{x}') + oldsymbol{\Sigma}^{(\ell)}(oldsymbol{x},oldsymbol{x}')$$

A key approach:

- If
$$\dot{\Sigma}^{(\ell)}(m{x},m{x}') = \langle m{\Lambda}^{(\ell)},m{\Lambda}^{(\ell)}'
angle$$
 and $\underline{\Sigma}^{(\ell)}(m{x},m{x}') = \langle m{\Psi}^{(\ell)},m{\Psi}^{(\ell)}'
angle$ $m{\Phi}^{(\ell)} = [m{\Phi}^{(\ell-1)} \otimes m{\Lambda}^{(\ell)}, \ m{\Psi}^{(\ell)}], \quad m{\Phi}^{(0)} = m{x}$

such that
$$K_{ ext{NTK}}^{(\ell)}(m{x},m{x}') = \langle m{\Phi}^{(\ell)},m{\Phi}^{(\ell)}'
angle$$

 \otimes : tensor product

Q: How to find $\Lambda^{(\ell)}, \Psi^{(\ell)}$ that approximates $\dot{\Sigma}^{(\ell)}, \Sigma^{(\ell)}$

⇒ Random Features [CS09], Polynomial Sketch [AKK+21]

Goal: $\dot{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') \approx \langle {\boldsymbol{\Lambda}^{(\ell)}}, {\boldsymbol{\Lambda}^{(\ell)}}' \rangle$ and $\Sigma^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') \approx \langle {\boldsymbol{\Psi}^{(\ell)}}, {\boldsymbol{\Psi}^{(\ell)}}' \rangle \ \ell = 1, \dots, L$

$$K_{\mathrm{NTK}}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') = K_{\mathrm{NTK}}^{(\ell-1)}(\boldsymbol{x}, \boldsymbol{x}') \cdot \dot{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') + \underline{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}')$$

What is Random Features?

– A feature map $\phi: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ such that

$$f(\boldsymbol{x}, \boldsymbol{x}') = \mathbb{E}_{\boldsymbol{w} \sim \mathcal{P}} \left[\phi(\boldsymbol{x}, \boldsymbol{w}) \cdot \phi(\boldsymbol{x}', \boldsymbol{w}) \right]$$

– Sample m independent vectors w_1, \ldots, w_m and construct

$$oldsymbol{\Phi} = rac{1}{\sqrt{m}} \left[\phi(oldsymbol{x}, oldsymbol{w}_1), \ldots, \phi(oldsymbol{x}, oldsymbol{w}_m)
ight]^ op \in \mathbb{R}^m$$
 (Random Features)

such that $f({m x},{m x}')=\mathbb{E}[\left\langle {m \Phi},{m \Phi}'
ight
angle]$

 $\textbf{Goal: } \dot{\Sigma}^{(\ell)}(\boldsymbol{x},\boldsymbol{x}') \approx \langle {\boldsymbol{\Lambda}^{(\ell)},\boldsymbol{\Lambda}^{(\ell)}}' \rangle \text{ and } \Sigma^{(\ell)}(\boldsymbol{x},\boldsymbol{x}') \approx \langle {\boldsymbol{\Psi}^{(\ell)},\boldsymbol{\Psi}^{(\ell)}}' \rangle \ \ell = 1,\ldots,L$

$$K_{\mathrm{NTK}}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') = K_{\mathrm{NTK}}^{(\ell-1)}(\boldsymbol{x}, \boldsymbol{x}') \cdot \dot{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') + \underline{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}')$$

Random Features of Arc-cosine Kernel [CS09]:

$$\Sigma^{(1)}(\boldsymbol{x}, \boldsymbol{x}') = 2 \mathop{\mathbb{E}}_{\boldsymbol{w} \sim \mathcal{N}} \left[\operatorname{ReLU}(\langle \boldsymbol{w}, \boldsymbol{x} \rangle) \cdot \operatorname{ReLU}(\langle \boldsymbol{w}, \boldsymbol{x}' \rangle) \right] = \mathbb{E} \left[\left\langle \boldsymbol{\Psi}, \boldsymbol{\Psi}' \right\rangle \right]$$

 $-m_1$ independent samples:

$$\mathbf{\Psi} = \sqrt{\frac{2}{m_1}} \operatorname{ReLU} \left(\left\langle \mathbf{w}_1, \mathbf{x} \right\rangle, \dots, \left\langle \mathbf{w}_{m_1}, \mathbf{x} \right\rangle \right)^{\top} \in \mathbb{R}^{m_1}$$

 $\textbf{Goal: } \dot{\Sigma}^{(\ell)}(\boldsymbol{x},\boldsymbol{x}') \approx \langle {\boldsymbol{\Lambda}^{(\ell)}},{\boldsymbol{\Lambda}^{(\ell)}}' \rangle \text{ and } \Sigma^{(\ell)}(\boldsymbol{x},\boldsymbol{x}') \approx \langle {\boldsymbol{\Psi}^{(\ell)}},{\boldsymbol{\Psi}^{(\ell)}}' \rangle \ \ \ell = 1,\dots,L$

$$K_{\mathrm{NTK}}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') = K_{\mathrm{NTK}}^{(\ell-1)}(\boldsymbol{x}, \boldsymbol{x}') \cdot \dot{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') + \underline{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}')$$

Random Features of Arc-cosine Kernel [CS09]:

$$\dot{\Sigma}^{(1)}(\boldsymbol{x},\boldsymbol{x}') = 2 \mathop{\mathbb{E}}_{\boldsymbol{w} \sim \mathcal{N}} \left[\operatorname{Step}(\langle \boldsymbol{w},\boldsymbol{x} \rangle) \cdot \operatorname{Step}(\langle \boldsymbol{w},\boldsymbol{x}' \rangle) \right] = \mathbb{E} \left[\left\langle \boldsymbol{\Lambda},\boldsymbol{\Lambda}' \right\rangle \right]$$

 $-m_0$ independent samples:

$$\mathbf{\Lambda} = \sqrt{\frac{2}{m_0}} \operatorname{Step} \left(\langle \boldsymbol{w}_1, \boldsymbol{x} \rangle, \dots, \langle \boldsymbol{w}_{m_1}, \boldsymbol{x} \rangle \right)^{\top} \in \mathbb{R}^{m_0}$$

NTK Random Features.

Initialize
$$\Phi^{(0)} = \Psi^{(0)} = \boldsymbol{x} \in \mathbb{R}^d$$

For
$$\ell = 1, \dots, L$$

$$\mathbf{\Lambda}^{(\ell)} = \sqrt{\frac{2}{m_0}} \operatorname{Step}(\mathbf{W}' \mathbf{\Psi}^{(\ell-1)}) \in \mathbb{R}^{m_0}$$

$$\boldsymbol{W}'_{ij} \sim \mathcal{N}(0,1)$$

$$\boldsymbol{\Psi}^{(\ell)} = \sqrt{\frac{2}{m_1}} \operatorname{ReLU}(\boldsymbol{W} \boldsymbol{\Psi}^{(\ell-1)}) \in \mathbb{R}^{m_1}$$

$$\boldsymbol{W}_{ij} \sim \mathcal{N}(0,1)$$

$$oldsymbol{\Phi}^{(\ell)} = [oldsymbol{\Phi}^{(\ell-1)} \otimes oldsymbol{\Lambda}^{(\ell)}, oldsymbol{\Psi}^{(\ell)}]$$

Return $\mathbf{\Phi}^{(L)}$ such that $K_{\mathrm{NTK}}^{(L)}(m{x},m{x}') pprox \langle {m{\Phi}^{(L)}},{m{\Phi}^{(L)}}'
angle$

NTK Random Features.

Initialize $\Phi^{(0)} = \Psi^{(0)} = x \in \mathbb{R}^d$

For $\ell = 1, \dots, L$

Random Features

$$\mathbf{\Lambda}^{(\ell)} = \sqrt{\frac{2}{m_0}} \operatorname{Step}(\mathbf{W}'\mathbf{\Psi}^{(\ell-1)}) \in \mathbb{R}^{m_0}$$

$$\boldsymbol{W}'_{ij} \sim \mathcal{N}(0,1)$$

$$\boldsymbol{\Psi}^{(\ell)} = \sqrt{\frac{2}{m_1}} \operatorname{ReLU}(\boldsymbol{W} \boldsymbol{\Psi}^{(\ell-1)}) \in \mathbb{R}^{m_1}$$

$$\mathbf{W}_{ij} \sim \mathcal{N}(0,1)$$

$$oldsymbol{\Phi}^{(\ell)} = [egin{array}{c} oldsymbol{\Phi}^{(\ell-1)} \otimes oldsymbol{\Lambda}^{(\ell)}, egin{array}{c} oldsymbol{\Psi}^{(\ell)} \end{array}]$$

Return $\mathbf{\Phi}^{(L)}$ such that $K_{\mathrm{NTK}}^{(L)}(m{x},m{x}') pprox \langle {\mathbf{\Phi}^{(L)}},{\mathbf{\Phi}^{(L)}}'
angle$

Dimension of tensor product: $\dim(\boldsymbol{x}\otimes\boldsymbol{y})=\dim(\boldsymbol{x})\cdot\dim(\boldsymbol{y})$

Dimension of $\Phi^{(L)}$ is $\mathcal{O}(m_0^L(m_1+d))$

Computational bottleneck:

$$\mathbf{\Lambda}^{(\ell)} = \sqrt{\frac{2}{m_0}} \operatorname{Step}(\mathbf{W}'\mathbf{\Psi}^{(\ell-1)}) \in \mathbb{R}^{m_0} \qquad \mathbf{W}'_{ij} \sim \mathcal{N}(0, 1)$$

$$\mathbf{\Psi}^{(\ell)} = \sqrt{\frac{2}{m_1}} \operatorname{ReLU}(\mathbf{W}\mathbf{\Psi}^{(\ell-1)}) \in \mathbb{R}^{m_1} \qquad \mathbf{W}_{ij} \sim \mathcal{N}(0, 1)$$

$$\mathbf{\Phi}^{(\ell)} = \left[\mathbf{\Phi}^{(\ell-1)} \otimes \mathbf{\Lambda}^{(\ell)}, \mathbf{\Psi}^{(\ell)} \right]$$

TensorSketch [PP13; AKK+20]:

$$\langle oldsymbol{x} \otimes oldsymbol{y}, oldsymbol{z} \otimes oldsymbol{w}
angle = \mathbb{E} \left\langle \mathcal{T}(oldsymbol{x}, oldsymbol{y}), \mathcal{T}(oldsymbol{z}, oldsymbol{w})
ight
angle, \quad oldsymbol{x}, oldsymbol{z}, oldsymbol{z}, oldsymbol{z}, oldsymbol{z}, oldsymbol{w} \in \mathbb{R}^d$$

- Inner-product preserving dimensionality reduction
- $-\mathcal{T}: \mathbb{R}^{d^2} \to \mathbb{R}^{m_{\mathtt{s}}}$ can be computed in time $\mathcal{O}(d+m_{\mathtt{s}}\log m_{\mathtt{s}})$ using FFT
- $-m_{\rm s}$ is a tradeoff between runtime and error bound
- $m_{\rm s}=\mathcal{O}\left(\frac{1}{arepsilon^2}\log^3\frac{1}{arepsilon\delta}\right)$ for given accuracy arepsilon and failure probability δ

NTK Random Features.

Initialize
$$\Phi^{(0)} = \Psi^{(0)} = x \in \mathbb{R}^d$$

For
$$\ell = 1, \dots, L$$

Random Features

$$\mathbf{\Lambda}^{(\ell)} = \sqrt{\frac{2}{m_0}} \operatorname{Step}(\mathbf{W}' \mathbf{\Psi}^{(\ell-1)}) \in \mathbb{R}^{m_0}$$

$$\boldsymbol{W}'_{ij} \sim \mathcal{N}(0,1)$$

$$\boldsymbol{\Psi}^{(\ell)} = \sqrt{\frac{2}{m_1}} \operatorname{ReLU}(\boldsymbol{W} \boldsymbol{\Psi}^{(\ell-1)}) \in \mathbb{R}^{m_1}$$

$$\mathbf{W}_{ij} \sim \mathcal{N}(0,1)$$

$$\mathbf{\Phi}^{(\ell)} = [\mathcal{T}(\mathbf{\Phi}^{(\ell-1)}, \mathbf{\Lambda}^{(\ell)}), \; \mathbf{\Psi}^{(\ell)}] \qquad \mathcal{T}: \mathsf{TensorSketch} \; \mathsf{to} \; \mathbb{R}^{m_{\mathrm{s}}}$$

Return $\Phi^{(L)}$ such that $K_{ ext{NTK}}^{(L)}(m{x},m{x}') pprox \langle {\Phi^{(L)},\Phi^{(L)}}'
angle$

Dimension of $\Phi^{(L)}$ is $m_1 + m_s$ due to Tensor Sketch

Question: what is the error bound in terms of m_1, m_0, m_s ?

Theorem 1. Given $oldsymbol{x},oldsymbol{x}'\in\mathbb{R}^d$ and $\delta\in(0,1),arepsilon\in(0,1/L)$, if

$$m_0 = \mathcal{O}\left(\frac{L^2}{\varepsilon^2}\log\frac{L}{\delta}\right), \ m_1 = \mathcal{O}\left(\frac{L^6}{\varepsilon^4}\log\frac{L}{\delta}\right), \ m_s = \mathcal{O}\left(\frac{L^2}{\varepsilon^2}\log^3\frac{L}{\varepsilon\delta}\right),$$

then

$$\Pr\left[\left|\left\langle \boldsymbol{\Phi}^{(L)}, \boldsymbol{\Phi}^{(L)'}\right\rangle - K_{\mathrm{NTK}}^{(L)}(\boldsymbol{x}, \boldsymbol{x}')\right| \leq (L+1)\varepsilon\right] \geq 1 - \delta$$

Theorem 1. Given $oldsymbol{x},oldsymbol{x}'\in\mathbb{R}^d$ and $\delta\in(0,1),arepsilon\in(0,1/L)$, if

$$m_0 = \mathcal{O}\left(\frac{L^2}{\varepsilon^2}\log\frac{L}{\delta}\right), \ m_1 = \mathcal{O}\left(\frac{L^6}{\varepsilon^4}\log\frac{L}{\delta}\right), \ m_s = \mathcal{O}\left(\frac{L^2}{\varepsilon^2}\log^3\frac{L}{\varepsilon\delta}\right),$$

then

$$\Pr\left[\left|\left\langle \boldsymbol{\Phi}^{(L)}, \boldsymbol{\Phi}^{(L)'}\right\rangle - K_{\mathrm{NTK}}^{(L)}(\boldsymbol{x}, \boldsymbol{x}')\right| \leq (L+1)\varepsilon\right] \geq 1 - \delta$$

[ADH+19] showed that the gradient random features can guarantee

$$\Pr\left[\left|\left\langle \frac{\partial f(\boldsymbol{x}, \theta)}{\partial \theta}, \frac{\partial f(\boldsymbol{x}', \theta)}{\partial \theta} \right\rangle - K_{\mathrm{NTK}}^{(L)}(\boldsymbol{x}, \boldsymbol{x}')\right| \leq (L+1)\varepsilon\right] \geq 1 - \delta$$

- Their feature dimension can be $\|\theta\|_0 = \widetilde{\Omega}\left(\frac{L^{13}}{\varepsilon^8}\right)$
- Our feature dimension is $m_1 + m_s = \widetilde{\mathcal{O}}\left(\frac{L^6}{\varepsilon^4}\right)$

Theorem 1. Given $oldsymbol{x},oldsymbol{x}'\in\mathbb{R}^d$ and $\delta\in(0,1),arepsilon\in(0,1/L)$, if

$$m_0 = \mathcal{O}\left(\frac{L^2}{\varepsilon^2}\log\frac{L}{\delta}\right), \ m_1 = \mathcal{O}\left(\frac{L^6}{\varepsilon^4}\log\frac{L}{\delta}\right), \ m_s = \mathcal{O}\left(\frac{L^2}{\varepsilon^2}\log^3\frac{L}{\varepsilon\delta}\right),$$

then

$$\Pr\left[\left|\left\langle \boldsymbol{\Phi}^{(L)}, \boldsymbol{\Phi}^{(L)'}\right\rangle - K_{\mathrm{NTK}}^{(L)}(\boldsymbol{x}, \boldsymbol{x}')\right| \leq (L+1)\varepsilon\right] \geq 1 - \delta$$

[ADH+19] showed that the gradient random features can guarantee

$$\Pr\left[\left|\left\langle \frac{\partial f(\boldsymbol{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}, \frac{\partial f(\boldsymbol{x}', \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right\rangle - K_{\text{NTK}}^{(L)}(\boldsymbol{x}, \boldsymbol{x}')\right| \leq (L+1)\varepsilon\right] \geq 1 - \delta$$

- Their feature dimension can be $\|\theta\|_0 = \widetilde{\Omega}\left(\frac{L^{13}}{\varepsilon^8}\right)$
- Our feature dimension is $m_1 + m_{\mathtt{s}} = \widetilde{\mathcal{O}}\left(\frac{L^6}{\varepsilon^4}\right)$

We can improve the error bound using importance sampling

NTK Sketch

 $\textbf{Goal: } \dot{\Sigma}^{(\ell)}(\boldsymbol{x},\boldsymbol{x}') \approx \langle {\boldsymbol{\Lambda}^{(\ell)}},{\boldsymbol{\Lambda}^{(\ell)}}' \rangle \text{ and } \Sigma^{(\ell)}(\boldsymbol{x},\boldsymbol{x}') \approx \langle {\boldsymbol{\Psi}^{(\ell)}},{\boldsymbol{\Psi}^{(\ell)}}' \rangle \ \ \ell = 1,\ldots,L$

$$K_{\mathrm{NTK}}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') = K_{\mathrm{NTK}}^{(\ell-1)}(\boldsymbol{x}, \boldsymbol{x}') \cdot \dot{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}') + \underline{\Sigma}^{(\ell)}(\boldsymbol{x}, \boldsymbol{x}')$$

PolySketch [AKK+20]:

 $-\dot{\Sigma}^{(\ell)}, \Sigma^{(\ell)}$ are dot-product kernels & approximated by a polynomial

$$\Sigma^{(1)}(\boldsymbol{x}, \boldsymbol{x}') = 1 - \frac{1}{\pi} \cos^{-1} \alpha \approx \sum_{j=0}^{p} c_j \alpha^j \qquad \alpha := \frac{\langle \boldsymbol{x}, \boldsymbol{x}' \rangle}{\|\boldsymbol{x}\|_2 \|\boldsymbol{x}'\|_2}$$

Each monomial term can be approximated by TensorSketch [PP13]

$$lpha^j pprox \langle \mathcal{T}(m{x},j), \mathcal{T}(m{x}',j)
angle \qquad \mathcal{T}(\cdot,j)$$
: TensorSketch of degree $m{j}$ $m{\Lambda}^{(1)} pprox \left[\sqrt{c_0}, \sqrt{c_1} \mathcal{T}(m{x},1), \ldots, \sqrt{c_p} \mathcal{T}(m{x},p)
ight]$ $\Sigma^{(1)}(m{x},m{x}') pprox \langle m{\Lambda}^{(1)}, m{\Lambda}^{(1)}'
angle$

NTK Sketch

NTK Sketch.

Initialize $\mathbf{\Phi}^{(0)} = \mathbf{\Lambda}^{(0)} = \boldsymbol{x} \in \mathbb{R}^d$ For $\ell = 1, \dots, L$

Sketching method

$$\Lambda^{(\ell)} = \text{PolySketch}(\Psi^{(\ell-1)}, p) \text{ for } 1 - \frac{1}{\pi}\cos^{-1}(x)$$

$$\mathbf{\Psi}^{(\ell)} = \text{PolySketch}(\mathbf{\Psi}^{(\ell-1)}, p') \text{ for } \frac{1}{\pi} \left(\sqrt{1 - x^2} + (\pi - \cos^{-1}(x))x \right)$$

$$oldsymbol{\Phi}^{(\ell)} = [\mathcal{T}(oldsymbol{\Phi}^{(\ell-1)}, oldsymbol{\Lambda}^{(\ell)}), \; oldsymbol{\Psi}^{(\ell)}] \qquad \mathcal{T}: extstyle{\sf TensorSketch to} \; \mathbb{R}^{m_{ extst{s}}}$$

Return $\Phi^{(L)}$ such that $K_{
m NTK}^{(L)}(m{x},m{x}')pprox \langle {\Phi^{(L)}},{\Phi^{(L)}}'
angle$

 $\dot{\Sigma}^{(\ell)}, \Sigma^{(\ell)}$ can be approximated by PolySketch [AKK+20]

PolySketch is faster than Random Features (i.e., matrix-matrix products)

With degree p and sketch dimension m , it can run in $\mathcal{O}(p(d+m\log m))$

NTK Sketch

Theorem 2. Given $x,x'\in\mathbb{R}^d$ and $\delta\in(0,1),\varepsilon\in(0,1/L)$, the NTK Sketch computes $\Phi^{(L)}\in\mathbb{R}^m, m=\mathcal{O}(\frac{1}{\varepsilon^2}\log\frac{1}{\delta})$ in time

$$\widetilde{\mathcal{O}}\left(\frac{L^{11}}{\varepsilon^{6.7}} + \frac{L^3}{\varepsilon^2}d\right)$$

such that

$$\Pr\left[\left|\left\langle \boldsymbol{\Phi}^{(L)}, \boldsymbol{\Phi}^{(L)}'\right\rangle - K_{\mathrm{NTK}}^{(L)}(\boldsymbol{x}, \boldsymbol{x}')\right| \leq \varepsilon \cdot K_{\mathrm{NTK}}^{(L)}(\boldsymbol{x}, \boldsymbol{x}')\right] \geq 1 - \delta$$

Feature dimension m does not depend on L

Compared to NTK Random Features, NTK Sketch is fast and efficient

	Feature dimension	Running time
NTK Random Features	$\widetilde{\mathcal{O}}\left(rac{L^6}{arepsilon^4} ight)$	$\widetilde{\mathcal{O}}\left(\frac{L^{13}}{arepsilon^8}\right)$

NTK RF/Sketch methods can be extended to Convolutional Neural Networks (CNNs)

Outline

Introduction

- Kernel Regression
- Neural Tangent Kernel
- Existing Work

NTK Feature Map Construction

- Exact NTK Computation
- NTK Random Features
- NTK Sketch

Experiments

- Classification on MNIST datasets
- Classification on CIFAR-10 datasets

Conclusion

Experiments: MNIST Classification

Comparison to other NTK approximation methods:

- Kernel regression by the exact NTK (Exact NTK)
- Gradient features by Monte-Carlo sampling (GradRF)
- NTK Random Features (NTKRF) / Sketch (NTKSketch)

Test accuracy versus feature dimension / computing time (L=1)

Experiments: CIFAR-10 Classification

Comparison to other NTK approximation methods:

- Kernel regression by the exact CNTK (Exact CNTK)
- Gradient features by Monte-Carlo sampling (GradRF)
- CNTK Sketch (CNTKSketch)

Test accuracy versus feature dimension / computing time (L=3)

Experiments: CIFAR-10 Classification

Comparison to other NTK approximation methods:

- Kernel regression by the exact CNTK (Exact CNTK)
- Gradient features by Monte-Carlo sampling (GradRF)
- CNTK Sketch (CNTKSketch)

Test accuracy versus feature dimension / computing time (L=3)

	CNTKSKETCH (ours)			GRADRF			Exact CNTK	CNN
Feature dimension	4,096	8,192	16,384	9,328	17,040	42,816		
Test accuracy (%) Time (s)	67.58 780	70.46 1,870	72.06 5,160	62.49 300	62.57 360	65.21 580	70.47* > 1,000,000	63.81*

^{*} means that the result is from [ADH+19]

Conclusion

Summary:

- We propose efficient feature maps of NTK / CNTK
- We design two approaches utilize sketching algorithm and arc-cosine random features, respectively
- We provide an entry-wise error bound for both algorithms
- We additionally provide a spectral approximation bound of random features approach with leverage score sampling
- The proposed methods outperform other baselines

Future work:

- Spectral approximation guarantee for deeper layers
- Applying our method to convolutional NTK, attention network, etc