Scaling Neural Tangent Kernels via
Sketching and Random Features

Insu Han

Yale University

Joint work with Amir Zandieh, Haim Avron,

Neta Shoham, Chaewon Kim, Jinwoo Shin

Outline

Introduction
— Kernel Regression
— Neural Tangent Kernel
— Existing Work

NTK Feature Map Construction
— Exact NTK Computation
— NTK Random Features
— NTK Sketch

Experiments
— Classification on MNIST datasets
— Classification on CIFAR-10 datasets

Conclusion

Outline

Introduction
— Kernel Regression
— Neural Tangent Kernel
— Existing Work

Kernel Regression

Kernel: a similarity function over pairs of data points in raw representation
— Mercer decomposition: for every kernel K : R? x R? — Rand z,z’ € R?

K(z,z') = (¢(x), p(x'))

— ¢is called a feature map

Kernel Regression

Kernel: a similarity function over pairs of data points in raw representation
— Mercer decomposition: for every kernel K : R? x R? — Rand z,z’ € R?

K(z,z') = (¢(x), p(x'))

— ¢is called a feature map

Kernel ridge regression:

n

1

w”™ = argmin - Z(yz — ¢(33z‘)Tw)2 + A ||wH§

. - . —— True Function
1=1 ——KRR Estimator| + =
- _ : « Data

— Simple and yet powerful tool for learning non-linear relationships
between data points

Scalability of Kernel Methods

Kernel methods are expensive

n Xn
,, T training points non-linear kernel
% inner product
[
= K, =K(x;x;)

- Computing all kernel entries take Q(n - nnz(X) + n?) time

- Even writing it down takes Q(n*d)time and Q(n*) memory

- A single iteration of a linear system solver takes Q(n?) time

- Forn = 100,000, K has 10 billion entries. Take 80 GB of storage!

Classical Solution: Dimensionality Reduction

n X S
approximation

K) |2 '

Storing Z uses O(ns) space and computing Z ' Za takes O(ns) time

Orthogonalization, eigen-decomposition and pseudo-inversion of Z ' Z
all take just O (ns?)time

Neural Tangent Kernel (NTK)

Kernel: a similarity function over pairs of data points in raw representation
— Mercer kernel is a function K : R? x RY — R such that for x, 2’ € R?

K(z,z') = (¢(x), p(x'))

— ¢is called a feature map (can be a random function)

Tangent kernel:

— For a smooth function f(-,), tangent kernel is an inner-product of
gradient at a fixed 6y
000>

of(x,0)

KT(Q),.’L‘/;H()) _ < o | 8f<.’.U 79)

0—0, 00

Neural Tangent Kernel

Fully-connected neural network:

Co

Vg

— 6= (Wq,...,wp): trainable parameters
— ¢, = 1/E.n[0(2)?]: normalization for activation

f(@,0) =hpwy, hy=——0(h, W), ho==

Neural Tangent Kernel [JGH18][LXS+19]:
Of(x,0) Of(x',0) >

'wLO f(z,0)

O - OO

1O O O]
S

[eX=NeYe)

l

[9)
O
0

Neural Tangent Kernel

Under infinite width regime, neural network is equivalent to NTK

— Prediction of neural networks trained under £5-loss by gradient flow
— NTK solved by kernel regression

Yiest = KNTK (Trests X) Knti (X, X) 'y

for training data X = [z, . ..,

O
O

P
1O O O]
S

O
O

x| yecR"
— No need to learn parameter 0 if Kntk(-) is given

O
O

Neural Tangent Kernel

NTK is useful both in theory and practice:
— Generalization [CG19], optimization [ALS19], regularization [HLY20]

— In practice, NTK can perform better regression results than training
neural networks (NN) [ADL+19]

Classifier Friedman Rank | Average Accuracy P90 P95 PMA
NTK 28.34 81.95%+14.10% | 88.89% | 72.22% | 95.72% +5.17%
NN (He init) 40.97 80.88%+14.96% 81.11% 65.56% 94.34% +7.22%
NN (NTK init) 38.06 81.02%+14.47% 85.56% 60.00% 94.55% +5.89%
RF 33.51 81.56% +13.90% 85.56% 67.78% 95.25% £5.30%
Gaussian Kernel 35.76 81.03% + 15.09% | 85.56% | 72.22% | 94.56% +8.22%
Polynomial Kernel 38.44 78.21% + 20.30% | 80.00% | 62.22% | 91.29% +18.05%

Comparisons of different classifiers on 90 UCI datasets [ADL+19]

Neural Tangent Kernel

NTK is useful both in theory and practice:
— Generalization [CG19], optimization [ALS19], regularization [HLY20]

— In practice, NTK can perform better regression results than training
neural networks (NN) [ADL+19]

Computational issues:
— Even NTK can be computed exactly [ADH+19], solving kernel regression

requires O(n’) time = infeasible for large 1
— Convolution NTK (CNTK) with A XW images takes Q(n2h>w?Ytime

E.g., Convolutional NTK with CIFAR-10 = 1000 GPU hours [SFG+20]

Neural Tangent Kernel

NTK is useful both in theory and practice:
— Generalization [CG19], optimization [ALS19], regularization [HLY20]

— In practice, NTK can perform better regression results than training
neural networks (NN) [ADL+19]

Computational issues:
— Even NTK can be computed exactly [ADH+19], solving kernel regression

requires O(n’) time = infeasible for large 1

Kernel approximation by feature map:
Enrx(z, @) = (p(x), o(2')), ¢ :R* = R"

— Kernel ridge regression can be solved in O(nm? +m?) time
— Memory complexity can be O(nm + m?)
— Usually, m < n

Existing Work

Goal: feature map construction ¢ such that K1(\1LT)K(337 ') ~ (p(x), o(x))

Gradient features of finitely wide network:

N of(x,0") Of(x',0") .
Kyt (®,2') @ = O’IE/\/< 50 50 (Definition)
Ts&\ 00 00
— 04,...,05:random samples from Gaussian distribution

— Gradient features show poor performances in practice [ADH+19]

Contributions

Fast and accurate NTK approximation using Random Features/Sketching

Feature dimension Runtime
Gradient Features [ADH+19] Q (I;—f) Q (i—?)
NTK Random Features (Our) O (é—f) O (i—f)
NTK Sketch (Our) O (% log) O (gi g d)
CNTK Sketch (Our) O (2 log 3) O (fﬁ—li : (dldg))

*CNTK with d, xd, images

— For all methods, the runtime of kernel regression reduces
from O(n® + n?d) to O(n(dimension? + runtime))

— For nimages, the exact CNTK can be computed in O (n?Ld3d3) time
while CNTK Sketch runs in O (nL'd;dy/ £57) time

Contributions

Fast and accurate NTK approximation using Random Features/Sketching

Feature dimension Runtime
Gradient Features [ADH+19] Q (I;—f) Q (i—?)
NTK Random Features (Our) O (é—f) O (i—f)
NTK Sketch (Our) O (% log) O (gi g d)
CNTK Sketch (Our) O (2 log 3) O (fﬁ—li : (dldg))

*CNTK with d, xd, images

Better performance than other heuristics under real-world datasets

— NTK Sketch with L = 3 achieves 72% of test accuracy of CIFAR-10
while the exact NTK, CNN achieve 70%, 64%, respectively

— CNTK Sketch is 190 times faster than the exact CNTK

Outline

NTK Feature Map Construction
— Exact NTK Computation
— NTK Random Features
— NTK Sketch

Exact NTK Computation

NTK with ReLU activation [ADH+19]: for layer /=1,...,Land x € R“

K (@, 2) = K& (@, o) - 59 (@, 2) + 2O (@, 2)

. J
Y

function of x¢-1)

where K. (z,2') = (z, ')

Exact NTK Computation

NTK with ReLU activation [ADH+19]: for layer /=1,...,Land x € R“

Kx(@, @) = K (@,2) - 5 (@,2) + 20 (2, 2)
where Kl(\IO%K<w7 2') = (@, a') function of R(¢-1

— 2 »®can be expressed as a closed-form formula using »(¢—b

1 1

2O(z,2') =1~ ~cos™' al” 2O, 2) = |||, |2'[l, 9(a'?)
T
o0 — U (@, @) V1—224 (m—cos”!(z))x
V2D (g,)R (2) 9(z) = 7r

Efficient NTK Approximation

NTK with ReLU activation [ADH+19]: for layer /=1,...,Land x € R“
K(z,2') = Kl (2, 2') - 5 (2, 2') + 20 (2, 2)

A key approach:

—If SO (z,z') = (A®,AOYand 2O (z,z') = (¥O, @O

Efficient NTK Approximation

NTK with ReLU activation [ADH+19]: for layer /=1,...,Land x € R“
K(z,2') = Kl (2, 2') - 5 (2, 2') + 20 (2, 2)

A key approach:

—If SO (z,z') = (A®,AOYand 2O (z,z') = (¥O, @O

Kl (@ a') = KQh (2, @) - (AW, A0 4 (O e
= (z,x') - <A(1),A(1)/> + (g, \Il(l)/>
— <[a: 0% A(l)7 \Il(l)], [:13’ X A(l)/, \Il(l),]> & :tensor product

Efficient NTK Approximation

NTK with ReLU activation [ADH+19]: for layer /=1,...,Land x € R“
K(z,2') = Kl (2, 2') - 5 (2, 2') + 20 (2, 2)

A key approach:
—If 3Oz, 2') = (AD,ADYand 2O (z,2') = (¥O, @O

0 — [(I)(f—l) R A(f)’ \I;(E)]7 &0 — 4

such that Kl(\f%K(a}, :B’) = <(I>(£)7 <I)(£)/> & :tensor product

Efficient NTK Approximation
NTK with ReLU activation [ADH+19]: for layer /= 1,...,Land x € R“
Klk(@ @) = Kl (@, 2) - £ (@,2) + 50(z, 2)
A key approach:
—If 3O(z,2') = (AD,ADYand £O(z,2') = (¥O, @O
0 — [q)(f—l) R A(f)’ \I;(E)]7 &0 — 4
such that Klgf%K(ma x') = <<I>(£), <I>(£)/> & : tensor product

Q: How to find AY, ¥ ®that approximates =), x(®
— Random Features [CS09], Polynomial Sketch [AKK+21]

NTK Random Features

Goal: XY (z, ') ~ <A(£),A(£)/>and SO (g, ') ~ (BW, \Il(e)/> ¢(=1,...,L
K{g(, @) = K (z.2') - £ (@, 2') + 2O (z, 2)
What is Random Features?
— A feature map ¢ :R? x RY = R such that
fl@a)= E_[o(@.w)- ¢’ w)
— Sample m independent vectors wy, ..., w,, and construct
P = \/% Pp(x,wy),..., qb(:v,’wm)]T c R™ (Random Features)

such that f(z,2') = E[(®, ®")]

NTK Random Features
Goal: XY (z,2’) ~ <A(£),A(£)/>and S>O(g, z') ~ (TP, \Il(e)/> ¢=1,...,L
Kl(\f%K(m, x') = Kl(\fT_é)(zc, x') - Z(E)(a:, z') + 2O (x,)

Random Features of Arc-cosine Kernel [CS09]:

2W(@,2) =2 E_[ReLU((w,2)) - ReLU((w,)] = E [(¥,¥")]

—m, independent samples:

2
U =,/— ReLU ((wy,2),..., (wn,,x)) €R™

mi

ReLU(x)

>
| g

NTK Random Features

Goal: XY (z, ') ~ <A(£),A(£)/>and SO (g, ') ~ (BW, \Il(e)/> ¢(=1,...,L
Kk (@ @) = Kype (2,2) - 59 (2, 2) + 92, o)
Random Features of Arc-cosine Kernel [CS09]:
»W(@,2’) =2 E_[Step((w,z)) - Step((w,2))] =K [(A,A')]

w v

— mg independent samples:

2
A= /= Step (w1,), ..., (wn,,x) €R™
mo Step(z)

n
>

NTK Random Features

NTK Random Features.
Initialize ®© = ¢ — 5 ¢ R?

For ¢ =1,...,L Random Features
AY = /2 Step(W'®V) e R™ W ~N(0,1)
o) = /2 ReLUWEV) e R™ Wi ~ N(0,1)

3O — [g A0, §O)

Return) such that K& (z,2') ~ (&), (1))

NTK Random Features

NTK Random Features.
Initialize &0 = ¢ = £ ¢ R?

For ¢ =1,...,L Random Features
AY = /2 Step(W'®V) e R™ W~ N(0,1)
T = /2 ReLUWT!~) e R™ Wi ~ N(0,1)

8O = [g A0, §O)

Return) such that K& (z,2') ~ (&), (1))

Dimension of tensor product: dim(z ® y) = dim(x) - dim(y)
Dimension of ®%) is O(m{(my +d)) s

-

When L is large, the output feature can be very large = no efficiency

NTK Random Features

Computational bottleneck:

A(E) — /mlo Step(W/\Il(e_l)> e R™o W;J ~ N(Oa 1)
\Il(e) _ /mll ReLU(W\IJ(E—l)) c R™ Wz-j ~ N(O, 1)

30 — [D g AO O]
TensorSketch [PP13; AKK+20]:
z@y zew)=E(T(z,y),T(z,w), =y zwecR

— Inner-product preserving dimensionality reduction

- 7.R% _y Rm=can be computed in time O(d 4+ mslog mg)using FFT
— m,is a tradeoff between runtime and error bound

- ms = O (% log” X)for given accuracy =and failure probability

NTK Random Features

NTK Random Features.
Initialize &0 = ¢ = £ ¢ R?

For ¢ =1,...,L Random Features
AY = /2 Step(W'®V) e R™ W~ N(0,1)
T = /2 ReLUWT!~) e R™ Wi ~ N(0,1)

0 = [T(@® YV AW, w¥) T :TensorSketchto R™:

Return) such that K& (z,2') ~ (&), (1))

Dimension of &) ism; + m. due to Tensor Sketch &5
Larger mq, mg, ms guarantee more accurate NTK approximation
Question: what is the error bound in terms ofmy, mg, ms ?

NTK Random Features

Theorem 1. Given z,2’ ¢ R® and 6 € (0,1),e € (0,1/L)if

moz(’)(g—jlog%), mlzC’)(g—jlog%), mS:(’)(g—jlog:S%),
then
Pr{

<<I>(L), (I)(L)’> _ Kl(\ILH_“)K<CB>w/)

S(L+1)5] >1-5

NTK Random Features

Theorem 1. Given z,2’ ¢ R® and 6 € (0,1),e € (0,1/L)if

moz(’)(g—jlog%), mlzC’)(g—jlog%), mS:(’)(g—jlog:S%),
then
Pr{

<<I>(L), (I)(L)’> _ Kl(\ILH_“)K<CB>w/)

S(L+1)a] >1-5

IADH+19] showed that the gradient random features can guarantee

Py [<8f(m,9) df(x',0)

(L) /
_K

80) 89 > NTK(CU’ L)

— Their feature dimension can be |0/, = L_lg)

e8

S(L+1)5] >1—90

. . . N 6
— Our feature dimensionis m; +mg = O (§—4> &

NTK Random Features

Theorem 1. Given z,2’ ¢ R® and 6 € (0,1),e € (0,1/L)if

moz(’)(g—jlog%), mlzC’)(g—jlog%), mS:(’)(g—jlog:S%),
then
Pr{

<<I>(L), (I)(L)’> _ Kl(\ILH_“)K<CB>w/)

S(L+1)a] >1-5

IADH+19] showed that the gradient random features can guarantee

Py [<8f(m,9) df(x',0)

(L) /

— K

Y, > NTK (Z:)

— Their feature dimension can be ||0]|, = I;—f)

S(L+1)5] >1—90

. . . ~ 6
— Our feature dimensionis m; +mg = O (§—4> &
We can improve the error bound using importance sampling

NTK Sketch
Goal: XY (z, ') ~ <A(£),A(£)/>and SOz, z') ~ (T, \Il(e)/> ¢(=1,...,L
Kx(@, @) = K (@,2) - 5 (@,2) + 20 (2, 2)

PolySketch [AKK+20]:
— »® x»(®are dot-product kernels & approximated by a polynomial

1 - .
SOz, x’)=1— =—cos ta~r choﬂ = ,
™ =0]| [l

(@, z')

— Each monomial term can be approximated by TensorSketch [PP13]
o = (T(x,j), T(x',))) T(-,7) : TensorSketch of degree j

AW ~ [eo, e T(z,1),..., /& T(x,p)]
Z(l)(a),fﬂ/) ~ <A(1),A(1)/>

NTK Sketch

NTK Sketch.
Initialize ®(© = A0 — 2 ¢ R?

For /=1,...,L Sketching method
AY) = PolySketch(®“~Y p) for 1 — L cos™!(z)

U = PolySketch(T“~V p') for 2 (V1—a22+ (7 —cos™(z))x)

Y = [T(@®“Y AW, w¥) T :TensorSketchto R™:

Return &) such that K& (z,2') ~ (&), (1))

> 539 can be approximated by PolySketch [AKK+20]
PolySketch is faster than Random Features (i.e., matrix-matrix products)

With degree p and sketch dimension m , it can run in O(p(d + mlogm))

NTK Sketch

Theorem 2. Given z,2’ € R® and § € (0,1),e € (0,1/L) the NTK Sketch
computes ®") ¢ R™, m = O(% log 1)in time

. Lll L3
0 (5 + 5)

56.7 c2

such that

|

<(I)(L)7 (I)(L)/> _ Kl(\ll';lzK<m7 33/)

Ss-Kl(\ILT?K(m,a:’)} >1-90

Feature dimension m does not depend on L
Compared to NTK Random Features, NTK Sketch is fast and efficient

Feature dimension Running time

NTK Random Features @ (g-f) O (I;—?)

NTK RF/Sketch methods can be extended to Convolutional Neural Networks
(CNNs)

Outline

Experiments
— Classification on MNIST datasets
— Classification on CIFAR-10 datasets

Experiments: MNIST Classification

Comparison to other NTK approximation methods:
— Kernel regression by the exact NTK (Exact NTK)
— Gradient features by Monte-Carlo sampling (GradRF)
— NTK Random Features (NTKRF) / Sketch (NTKSketch)

Test accuracy versus feature dimension / computing time (L = 1)

test accuracy
%
(@]

»

—— GRADRF

—— NTKRF
—3%— Exact NTK

——v— NTKSKETCH

10°

featu

102
re dimension

10°

0.981

0.961

test accuracy
(D)
=
()

0.944

=
©
NG}

|| —%=— NTKSKETCH
0.881

—e— GRADRF

—g— NTKRF
8 ExactNTK

10" 10!
wall-clock time (sec)

102

Experiments: CIFAR-10 Classification

Comparison to other NTK approximation methods:
— Kernel regression by the exact CNTK (Exact CNTK)

— Gradient features by Monte-Carlo sampling (GradRF)
— CNTK Sketch (CNTKSketch)

Test accuracy versus feature dimension / computing time (L = 3)

0.701 %
N _ 065
& 0.601 & 0.601
<3.>() o
).551 0.55-
& &
% 0.50 = 0.50-
Q Q —e—
0.45 0.45- SRADIE
—e— GRADRF —%— CNTKSKETCH
0.401 —%— CNTKSKETCH 0.407 —%— Exact CNTK*
102 103 102 103 107

running time (sec) feature dimension

Experiments: CIFAR-10 Classification

Comparison to other NTK approximation methods:
— Kernel regression by the exact CNTK (Exact CNTK)

— Gradient features by Monte-Carlo sampling (GradRF)
— CNTK Sketch (CNTKSketch)

Test accuracy versus feature dimension / computing time (L = 3)

CNTKSKETCH (ours) GRADRF Exact CNTK CNN
Feature dimension 4,096 8,192 16,384 9,328 17,040 42,816
Test accuracy (%) 67.58 70.46 72.06 62.49 62.57 65.21 70.47* 63.81"
Time (s) 780 1,870 5,160 300 360 580 > 1,000,000

* means that the result is from [ADH+19]

Conclusion

Summary:
— We propose efficient feature maps of NTK / CNTK

— We design two approaches utilize sketching algorithm and arc-cosine
random features, respectively

— We provide an entry-wise error bound for both algorithms

— We additionally provide a spectral approximation bound of random
features approach with leverage score sampling

— The proposed methods outperform other baselines

Future work:
— Spectral approximation guarantee for deeper layers
— Applying our method to convolutional NTK, attention network, etc

