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Kernel Regression

Kernel: a similarity function over pairs of data points in raw representation
− Mercer decomposition: for every kernel                             and 

− is called a feature map

Kernel ridge regression:

− Simple and yet powerful tool for learning non-linear relationships 
between data points



Scalability of Kernel Methods
Kernel methods are expensive

− Computing all kernel entries take                                    time
− Even writing it down takes              time and            memory
− A single iteration of a linear system solver takes            time
− For                      ,      has 10 billion entries. Take 80 GB of storage!

non-linear kernel 
inner product

training points
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Classical Solution: Dimensionality Reduction

Storing     uses             space and computing              takes             time
Orthogonalization, eigen-decomposition and pseudo-inversion of 
all take just              time

low-rank
approximation



Neural Tangent Kernel (NTK)

Kernel: a similarity function over pairs of data points in raw representation
− Mercer kernel is a function                                 such that for 

− is called a feature map (can be a random function)

Tangent kernel:
− For a smooth function            , tangent kernel is an inner-product of 

gradient at a fixed     :



Neural Tangent Kernel

Fully-connected neural network:

− : trainable parameters
− : normalization for activation

Neural Tangent Kernel [JGH18][LXS+19]:

… …… …



Neural Tangent Kernel

Under infinite width regime, neural network is equivalent to NTK
− Prediction of neural networks trained under ℓ!-loss by gradient flow
− NTK solved by kernel regression

for training data
− No need to learn parameter    if                 is given

… …

…

…
…

…
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Neural Tangent Kernel

NTK is useful both in theory and practice:
− Generalization [CG19], optimization [ALS19], regularization [HLY20]
− In practice, NTK can perform better regression results than training 

neural networks (NN) [ADL+19]

Comparisons of different classifiers on 90 UCI datasets [ADL+19]



Neural Tangent Kernel

NTK is useful both in theory and practice:
− Generalization [CG19], optimization [ALS19], regularization [HLY20]
− In practice, NTK can perform better regression results than training 

neural networks (NN) [ADL+19]

Computational issues:
− Even NTK can be computed exactly [ADH+19], solving kernel regression 

requires             time ⇒ infeasible for large 𝑛
− Convolution NTK (CNTK) with ℎ×𝑤 images takes                      time

E.g., Convolutional NTK with CIFAR-10 ≥ 1000 GPU hours [SFG+20] 



Neural Tangent Kernel

NTK is useful both in theory and practice:
− Generalization [CG19], optimization [ALS19], regularization [HLY20]
− In practice, NTK can perform better regression results than training 

neural networks (NN) [ADL+19]

Computational issues:
− Even NTK can be computed exactly [ADH+19], solving kernel regression 

requires             time ⇒ infeasible for large 𝑛

Kernel approximation by feature map:

− Kernel ridge regression can be solved in                           time
− Memory complexity can be
− Usually, 



Existing Work

Goal: feature map construction such that

Gradient features of finitely wide network:

− : random samples from Gaussian distribution
− Gradient features show poor performances in practice [ADH+19]

(Definition)



Contributions

Fast and accurate NTK approximation using Random Features/Sketching

− For all methods, the runtime of kernel regression reduces
from                        to

− For    images, the exact CNTK can be computed in                        time
while CNTK Sketch runs in                                   time

Feature dimension Runtime

Gradient Features [ADH+19]

NTK Random Features (Our)

NTK Sketch (Our)

CNTK Sketch (Our)

*CNTK with 𝑑!×𝑑" images 



Contributions

Fast and accurate NTK approximation using Random Features/Sketching

Better performance than other heuristics under real-world datasets
− NTK Sketch with 𝐿 = 3 achieves 72% of test accuracy of CIFAR-10 

while the exact NTK, CNN achieve 70%, 64%, respectively
− CNTK Sketch is 190 times faster than the exact CNTK

Feature dimension Runtime

Gradient Features [ADH+19]

NTK Random Features (Our)

NTK Sketch (Our)

CNTK Sketch (Our)

*CNTK with 𝑑!×𝑑" images 
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Exact NTK Computation

NTK with ReLU activation [ADH+19]:  for layer                       and
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Exact NTK Computation

NTK with ReLU activation [ADH+19]:  for layer                       and

where                                                                

− can be expressed as a closed-form formula using 

function of 
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Efficient NTK Approximation

NTK with ReLU activation [ADH+19]:  for layer                       and 

A key approach:

− If                                               and

Q: How to find                  that approximates                   

⇒ Random Features [CS09], Polynomial Sketch [AKK+21]

such thatsuch that : tensor product



NTK Random Features

Goal: and

What is Random Features?
− A feature map                                 such that

− Sample 𝑚 independent vectors                       and construct

such that

(Random Features)



NTK Random Features

Goal: and

Random Features of Arc-cosine Kernel [CS09]:

−𝑚! independent samples:



NTK Random Features

Goal: and

Random Features of Arc-cosine Kernel [CS09]:

−𝑚! independent samples:



NTK Random Features

NTK Random Features.
Initialize
For 

Return           such that

Random Features



NTK Random Features

NTK Random Features.
Initialize
For 

Return           such that

Dimension of tensor product: 
Dimension of          is                              

When 𝐿 is large, the output feature can be very large ⇒ no efficiency

Random Features



NTK Random Features

Computational bottleneck:

TensorSketch [PP13; AKK+20]:

− Inner-product preserving dimensionality reduction
− can be computed in time                                 using FFT
− is a tradeoff between runtime and error bound 
− for given accuracy    and failure probability 



NTK Random Features

NTK Random Features.
Initialize
For 

Return           such that

Dimension of          is                  due to Tensor Sketch
Larger                      guarantee more accurate NTK approximation
Question: what is the error bound in terms of                     ?

TensorSketch to 

Random Features
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[ADH+19] showed that the gradient random features can guarantee 

− Their feature dimension can be 

− Our feature dimension is



NTK Random Features

Theorem 1. Given                        and                                        , if 

then

[ADH+19] showed that the gradient random features can guarantee 

− Their feature dimension can be 

− Our feature dimension is
We can improve the error bound using importance sampling



NTK Sketch

Goal: and

PolySketch [AKK+20]:
− are dot-product kernels & approximated by a polynomial

− Each monomial term can be approximated by TensorSketch [PP13]

: TensorSketch of degree 𝑗



NTK Sketch

NTK Sketch.
Initialize
For 

Return           such that

can be approximated by PolySketch [AKK+20]
PolySketch is faster than Random Features (i.e., matrix-matrix products)

With degree 𝑝 and sketch dimension 𝑚 , it can run in

TensorSketch to 

for

for

Sketching method



NTK Sketch

Theorem 2. Given                        and                                        , the NTK Sketch 
computes                                                   in time

such that

Feature dimension 𝑚 does not depend on 𝐿
Compared to NTK Random Features, NTK Sketch is fast and efficient

NTK RF/Sketch methods can be extended to Convolutional Neural Networks 
(CNNs)

Feature dimension Running time

NTK Random Features
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Experiments: MNIST Classification

Comparison to other NTK approximation methods:
− Kernel regression by the exact NTK (Exact NTK)
− Gradient features by Monte-Carlo sampling (GradRF)
− NTK Random Features (NTKRF) / Sketch (NTKSketch)

Test accuracy versus feature dimension / computing time (𝐿 = 1)



Experiments: CIFAR-10 Classification

Comparison to other NTK approximation methods:
− Kernel regression by the exact CNTK (Exact CNTK)
− Gradient features by Monte-Carlo sampling (GradRF)
− CNTK Sketch (CNTKSketch)

Test accuracy versus feature dimension / computing time (𝐿 = 3)



Experiments: CIFAR-10 Classification

Comparison to other NTK approximation methods:
− Kernel regression by the exact CNTK (Exact CNTK)
− Gradient features by Monte-Carlo sampling (GradRF)
− CNTK Sketch (CNTKSketch)

Test accuracy versus feature dimension / computing time (𝐿 = 3)

* means that the result is from [ADH+19]



Conclusion

Summary:
− We propose efficient feature maps of NTK / CNTK
− We design two approaches utilize sketching algorithm and arc-cosine 

random features, respectively
− We provide an entry-wise error bound for both algorithms
− We additionally provide a spectral approximation bound of random 

features approach with leverage score sampling
− The proposed methods outperform other baselines

Future work:
− Spectral approximation guarantee for deeper layers
− Applying our method to convolutional NTK, attention network, etc


