
Scaling Neural Tangent Kernels via
Sketching and Random Features

Joint work with Amir Zandieh, Haim Avron,

Neta Shoham, Chaewon Kim, Jinwoo Shin

Insu Han
Yale University

Outline

Introduction
− Kernel Regression
− Neural Tangent Kernel
− Existing Work

NTK Feature Map Construction
− Exact NTK Computation
− NTK Random Features
− NTK Sketch

Experiments
− Classification on MNIST datasets
− Classification on CIFAR-10 datasets

Conclusion

Outline

Introduction
− Kernel Regression
− Neural Tangent Kernel
− Existing Work

NTK Feature Map Construction
− Exact NTK Computation
− NTK Random Features
− NTK Sketch

Experiments
− Classification on MNIST datasets
− Classification on CIFAR-10 datasets

Conclusion

Kernel Regression

Kernel: a similarity function over pairs of data points in raw representation
− Mercer decomposition: for every kernel and

− is called a feature map

Kernel Regression

Kernel: a similarity function over pairs of data points in raw representation
− Mercer decomposition: for every kernel and

− is called a feature map

Kernel ridge regression:

− Simple and yet powerful tool for learning non-linear relationships
between data points

Scalability of Kernel Methods
Kernel methods are expensive

− Computing all kernel entries take time
− Even writing it down takes time and memory
− A single iteration of a linear system solver takes time
− For , has 10 billion entries. Take 80 GB of storage!

non-linear kernel
inner product

training points

fe
at
ur
es

Classical Solution: Dimensionality Reduction

Storing uses space and computing takes time
Orthogonalization, eigen-decomposition and pseudo-inversion of
all take just time

low-rank
approximation

Neural Tangent Kernel (NTK)

Kernel: a similarity function over pairs of data points in raw representation
− Mercer kernel is a function such that for

− is called a feature map (can be a random function)

Tangent kernel:
− For a smooth function , tangent kernel is an inner-product of

gradient at a fixed :

Neural Tangent Kernel

Fully-connected neural network:

− : trainable parameters
− : normalization for activation

Neural Tangent Kernel [JGH18][LXS+19]:

… …… …

Neural Tangent Kernel

Under infinite width regime, neural network is equivalent to NTK
− Prediction of neural networks trained under ℓ!-loss by gradient flow
− NTK solved by kernel regression

for training data
− No need to learn parameter if is given

… …

…

…
…

…
…

Neural Tangent Kernel

NTK is useful both in theory and practice:
− Generalization [CG19], optimization [ALS19], regularization [HLY20]
− In practice, NTK can perform better regression results than training

neural networks (NN) [ADL+19]

Comparisons of different classifiers on 90 UCI datasets [ADL+19]

Neural Tangent Kernel

NTK is useful both in theory and practice:
− Generalization [CG19], optimization [ALS19], regularization [HLY20]
− In practice, NTK can perform better regression results than training

neural networks (NN) [ADL+19]

Computational issues:
− Even NTK can be computed exactly [ADH+19], solving kernel regression

requires time ⇒ infeasible for large 𝑛
− Convolution NTK (CNTK) with ℎ×𝑤 images takes time

E.g., Convolutional NTK with CIFAR-10 ≥ 1000 GPU hours [SFG+20]

Neural Tangent Kernel

NTK is useful both in theory and practice:
− Generalization [CG19], optimization [ALS19], regularization [HLY20]
− In practice, NTK can perform better regression results than training

neural networks (NN) [ADL+19]

Computational issues:
− Even NTK can be computed exactly [ADH+19], solving kernel regression

requires time ⇒ infeasible for large 𝑛

Kernel approximation by feature map:

− Kernel ridge regression can be solved in time
− Memory complexity can be
− Usually,

Existing Work

Goal: feature map construction such that

Gradient features of finitely wide network:

− : random samples from Gaussian distribution
− Gradient features show poor performances in practice [ADH+19]

(Definition)

Contributions

Fast and accurate NTK approximation using Random Features/Sketching

− For all methods, the runtime of kernel regression reduces
from to

− For images, the exact CNTK can be computed in time
while CNTK Sketch runs in time

Feature dimension Runtime

Gradient Features [ADH+19]

NTK Random Features (Our)

NTK Sketch (Our)

CNTK Sketch (Our)

*CNTK with 𝑑!×𝑑" images

Contributions

Fast and accurate NTK approximation using Random Features/Sketching

Better performance than other heuristics under real-world datasets
− NTK Sketch with 𝐿 = 3 achieves 72% of test accuracy of CIFAR-10

while the exact NTK, CNN achieve 70%, 64%, respectively
− CNTK Sketch is 190 times faster than the exact CNTK

Feature dimension Runtime

Gradient Features [ADH+19]

NTK Random Features (Our)

NTK Sketch (Our)

CNTK Sketch (Our)

*CNTK with 𝑑!×𝑑" images

Outline

Introduction
− Kernel Regression
− Neural Tangent Kernel
− Existing Work

NTK Feature Map Construction
− Exact NTK Computation
− NTK Random Features
− NTK Sketch

Experiments
− Classification on MNIST datasets
− Classification on CIFAR-10 datasets

Conclusion

Exact NTK Computation

NTK with ReLU activation [ADH+19]: for layer and

where function of

Exact NTK Computation

NTK with ReLU activation [ADH+19]: for layer and

where

− can be expressed as a closed-form formula using

function of

Efficient NTK Approximation

NTK with ReLU activation [ADH+19]: for layer and

A key approach:

− If and

Efficient NTK Approximation

NTK with ReLU activation [ADH+19]: for layer and

A key approach:

− If and

: tensor product

Efficient NTK Approximation

NTK with ReLU activation [ADH+19]: for layer and

A key approach:

− If and

such that : tensor product

Efficient NTK Approximation

NTK with ReLU activation [ADH+19]: for layer and

A key approach:

− If and

Q: How to find that approximates

⇒ Random Features [CS09], Polynomial Sketch [AKK+21]

such thatsuch that : tensor product

NTK Random Features

Goal: and

What is Random Features?
− A feature map such that

− Sample 𝑚 independent vectors and construct

such that

(Random Features)

NTK Random Features

Goal: and

Random Features of Arc-cosine Kernel [CS09]:

−𝑚! independent samples:

NTK Random Features

Goal: and

Random Features of Arc-cosine Kernel [CS09]:

−𝑚! independent samples:

NTK Random Features

NTK Random Features.
Initialize
For

Return such that

Random Features

NTK Random Features

NTK Random Features.
Initialize
For

Return such that

Dimension of tensor product:
Dimension of is

When 𝐿 is large, the output feature can be very large ⇒ no efficiency

Random Features

NTK Random Features

Computational bottleneck:

TensorSketch [PP13; AKK+20]:

− Inner-product preserving dimensionality reduction
− can be computed in time using FFT
− is a tradeoff between runtime and error bound
− for given accuracy and failure probability

NTK Random Features

NTK Random Features.
Initialize
For

Return such that

Dimension of is due to Tensor Sketch
Larger guarantee more accurate NTK approximation
Question: what is the error bound in terms of ?

TensorSketch to

Random Features

NTK Random Features

Theorem 1. Given and , if

then

NTK Random Features

Theorem 1. Given and , if

then

[ADH+19] showed that the gradient random features can guarantee

− Their feature dimension can be

− Our feature dimension is

NTK Random Features

Theorem 1. Given and , if

then

[ADH+19] showed that the gradient random features can guarantee

− Their feature dimension can be

− Our feature dimension is
We can improve the error bound using importance sampling

NTK Sketch

Goal: and

PolySketch [AKK+20]:
− are dot-product kernels & approximated by a polynomial

− Each monomial term can be approximated by TensorSketch [PP13]

: TensorSketch of degree 𝑗

NTK Sketch

NTK Sketch.
Initialize
For

Return such that

can be approximated by PolySketch [AKK+20]
PolySketch is faster than Random Features (i.e., matrix-matrix products)

With degree 𝑝 and sketch dimension 𝑚 , it can run in

TensorSketch to

for

for

Sketching method

NTK Sketch

Theorem 2. Given and , the NTK Sketch
computes in time

such that

Feature dimension 𝑚 does not depend on 𝐿
Compared to NTK Random Features, NTK Sketch is fast and efficient

NTK RF/Sketch methods can be extended to Convolutional Neural Networks
(CNNs)

Feature dimension Running time

NTK Random Features

Outline

Introduction
− Kernel Regression
− Neural Tangent Kernel
− Existing Work

NTK Feature Map Construction
− Exact NTK Computation
− NTK Random Features
− NTK Sketch

Experiments
− Classification on MNIST datasets
− Classification on CIFAR-10 datasets

Conclusion

Experiments: MNIST Classification

Comparison to other NTK approximation methods:
− Kernel regression by the exact NTK (Exact NTK)
− Gradient features by Monte-Carlo sampling (GradRF)
− NTK Random Features (NTKRF) / Sketch (NTKSketch)

Test accuracy versus feature dimension / computing time (𝐿 = 1)

Experiments: CIFAR-10 Classification

Comparison to other NTK approximation methods:
− Kernel regression by the exact CNTK (Exact CNTK)
− Gradient features by Monte-Carlo sampling (GradRF)
− CNTK Sketch (CNTKSketch)

Test accuracy versus feature dimension / computing time (𝐿 = 3)

Experiments: CIFAR-10 Classification

Comparison to other NTK approximation methods:
− Kernel regression by the exact CNTK (Exact CNTK)
− Gradient features by Monte-Carlo sampling (GradRF)
− CNTK Sketch (CNTKSketch)

Test accuracy versus feature dimension / computing time (𝐿 = 3)

* means that the result is from [ADH+19]

Conclusion

Summary:
− We propose efficient feature maps of NTK / CNTK
− We design two approaches utilize sketching algorithm and arc-cosine

random features, respectively
− We provide an entry-wise error bound for both algorithms
− We additionally provide a spectral approximation bound of random

features approach with leverage score sampling
− The proposed methods outperform other baselines

Future work:
− Spectral approximation guarantee for deeper layers
− Applying our method to convolutional NTK, attention network, etc

