
LeadCache: Regret-Optimal Caching in Networks

LeadCache: Regret-Optimal Caching in Networks

Abhishek Sinha
Assistant Professor of EE

IIT Madras

Debjit Paria

Chennai Mathematical Institute

NeurIPS 21

Tuesday 12th October, 2021

1 / 20

LeadCache: Regret-Optimal Caching in Networks

The Network Caching Problem

Consider the problem of retrieving movies from the Netflix servers

2

1

1

3 4

52

3

R1

7 8

9

10

46

R2

Cache

User

R

Router

Schematic of a Content Distribution Network (CDN)

Problem: How to predict the future file requests and cache the files optimally across
thousands of servers distributed across the globe?

2 / 20

LeadCache: Regret-Optimal Caching in Networks

History and Related Work

The caching (a.k.a. paging) problem has been studied for more than sixty years

Two distinct lines of work:

Adversarial requests: minimizes the Competitive Ratio.
Stochastic requests: maximizes the hit-rate (e.g., with Zipf’s popularity distribution).
Recently, there has been a surge of activities on coded caching as well.

Due to the complex interactions among the caches, the majority of the works on
network caching assume a stochastic model

Negative result in the adversarial setting: Unbounded competitive ratio for deterministic

algorithms (Vaze et al. 2016)

With volatile content popularity, the stationarity assumption does not hold in
practice

Need a learning-based policy that can learn the transient file-request patterns on-the-fly

Our contribution: Uncoded network caching to minimize regret using tools from
online learning theory

3 / 20

LeadCache: Regret-Optimal Caching in Networks

Bipartite Caching

Users Caches

0 1 0

0 1 . . . 1 . . . 0

1 . . . 1 . . . 1 0
requested file

caching

I J

E

configuration

Bipartite-network

Network given by a Bipartite Graph G
User i is connected to cache j iff it can retrieve a file from cache j in the original
network

Each cache has a limited storage capacity of C files

4 / 20

LeadCache: Regret-Optimal Caching in Networks

Notations

Cache Configuration: y j
t ∈ {0, 1}N denotes the set of files in cache j at time t,

with
∑N

f =1 y j
t,f ≤ C .

File Requests: x i
t ∈ {0, 1}N is the requested file by user i at time t, with∑N

f =1 x i
t,f = 1.

∂+(i)

0 . . . 1 0 . . . 1 0. . . 0

1 0. . . 1 0 . . . 0

0. . . 1 1 0 . . . 0

0 1 0

User i ’s view

caches

i ∈ I, ∂+(i) = {j : j ∈ J , (i , j) ∈ E}

∂−(j)

0 1 0

1 0 0

0 0 1

0 . . . 1 0 . . . 1 0. . . 0

Cache j ’s view

users

j ∈ J , ∂−(J) = {i : i ∈ I, (i , j) ∈ E}

5 / 20

LeadCache: Regret-Optimal Caching in Networks

Problem Statement

A user receives a cache-hit if the requested file is currently stored in at least any
one of the caches connected to the user.

The reward at slot t is given by the total number of cache-hits:

q(x t , y t) ≡
∑

i∈I,f∈[N]

x if (t) ·
(

min
(
1,

∑
j∈∂+(i)

y j
f

))
.

The user requests are decided by the adversary and the online policy decides the
cache configuration before the requests arrive at each slot.

Performance metrics: (1) Hit rate (measured by Static regret):

E
(
Rπ(T)

) (def.)
= E

[
sup
{xt}Tt=1

(T∑
t=1

q(x t , y∗)−
T∑
t=1

q(x t , yπt)

)]

where y∗ = arg maxy∈Y
∑T

t=1 q(x t , y), the best fixed offline configuration

(2) Cache refresh rate - need to minimize to avoid network congestion

6 / 20

LeadCache: Regret-Optimal Caching in Networks

Warm up: Single Cache results [Bhattacharjee et al. 2020]

Cache capacity = C

ServerUser

Caching with a single cache

Lower bound: For any N ≥ 2C , the regret of any online caching policy π is lower
bounded as

RπT ≥
√

CT

2π
−Θ(

1
√
T

).

Upper-Bound: A Follow-the-Perturbed Leader (FTPL)-based caching policy
(described next) achieves

E(RπT) ≤ 1.51(log(N/C))1/4
√
CT .

7 / 20

LeadCache: Regret-Optimal Caching in Networks

Single Cache Policy

As the requests are adversarial, the greedy strategy of storing the C most
frequently requested files does not work.

Surprisingly, the above strategy works if we add independent noise to the frequency
counts!

Follow The Perturbed Leader for single cache

Add scaled standard Gaussian noise to the cumulative file count X (t), and then cache
the top C files, i.e.,

y t = argmax
c∈C

〈Θ(t), c〉

where Θ(t) = X (t) + ηγ and γ
i.i.d.∼ N (0, 1N×1), η = O(

√
T).

Observations:

The FTPL policy fetches at most one file at a slot, and hence, is bandwidth
efficient.

Popular caching policies, such as LRU, LFU, FIFO, MARKER are provably
sub-optimal as they all have linear regret.

8 / 20

LeadCache: Regret-Optimal Caching in Networks

Design of The LeadCache Policy

The main obstacle in extending the previous FTPL policy is the non-linearity of the
reward function.

To get around this issue, we switch to a virtual action domain Z

q(x t , y t) ≡
∑
i∈I

x i (t) ·
(

min
(
1,

∑
j∈∂+(i)

y j
))

︸ ︷︷ ︸
≥z(t)

At every step we need to “solve” an Integer Linear Program (more about this later)
and then apply FTPL:

z t ∈ arg max
z∈Z

(∑
i∈I

Θi (t) · z i

)
,

(
xt,yt

) (
xt, zt

) (
ẑt

) (
ŷt

)

Non-linear Linear Virtual Policy Physical Policy

q(xt,yt)

FTPL

〈xt, zt〉

ŷt = ψ(ẑt)

9 / 20

LeadCache: Regret-Optimal Caching in Networks

Achievability and Converse

Theorem (Achievability)

The expected regret for the LeadCache policy is upper bounded by:

E
(
RLeadCache
T

)
≤ kn3/4d1/4

√
mCT ,

where k = O
(
poly-log(N/C)

)
, n denotes the number of users and d is the maximum

number of connected users per cache.

Theorem (Converse)

For a large enough library of size N ≥ max
(
2 d2Cm

n
, 2mC

)
the regret RπT of any online

caching policy π is lower bounded by:

RπT ≥ max

(√
mnCT

2π
, d

√
mCT

2π

)
−Θ(

1
√
T

).

These two Theorems, taken together, implies that LeadCache is regret optimal up to a
factor of Õ(n3/8).

10 / 20

LeadCache: Regret-Optimal Caching in Networks

Bounding the Number of Cache Refreshes

We now consider bounding the frequency of cache-refreshes under the following
stochastic assumption.

Stochastic Regularity Assumption: There exists a set of non-negative numbers
{pif }i∈I,f∈[N] such that for any ε > 0, we have:

∞∑
t=1

P
(∣∣∣∣X i

f (t)

t
− pif

∣∣∣∣ ≥ ε) <∞, ∀i ∈ I, f ∈ [N]. (1)

The above condition necessarily implies (via the First Borel-Cantelli Lemma)

X i
f (t)

t
→ pif , a.s.,∀i ∈ I, f ∈ [N]. (2)

Theorem (Finite downloads)

Under the above regularity assumption, the file fetches to the caches stop after a finite
time with probability 1.

11 / 20

LeadCache: Regret-Optimal Caching in Networks

Approximation Algorithm - 1 (Pipage, deterministic)

The ILP in LeadCache is indeed NP-Hard in the worst-case :(

Approx. Algorithm 1: Pipage rounding [Ageev and Sviridenko 2004] for rounding
y∗ to an integral solution

Consider the surrogate loss function corresponding to L(y)

φ(y) =
∑
i,f

(θif (t))+
(
1−

∏
j∈∂+(i)

(1− y j
f)
)

Observe that, keeping y−j fixed, φ(y) is linear in each y j

Approximation Lemma

L(y)≥φ(y) ≥
(

1− (1−
1

∆
)∆

)
L(y),

where ∆ ≡ maxi∈I |∂+(i)|.
The Pipage procedure rounds the solution vector iteratively such that {φ(y t)}t≥1

is non-decreasing, yielding an approximation guarantee of 1− 1/e.

However, Pipage does not necessarily yield a sub-linear regret guarantee.

12 / 20

LeadCache: Regret-Optimal Caching in Networks

Approximation Algorithm - 2 (Randomized)

Algorithm 2:

Relax the ILP to an LP

Randomly sample C files from each caches using Madow’s systematic sampling with the
inclusion probability vector obtained from the LP

Theorem (α-sublinear regret)

The above rounding scheme runs in linear time and yields an 1− 1/e-regret guarantee of

Õ(n3/4
√
dmCT).

Observation: Although the randomized rounding with Madow’s sampling is theoretically
sound, in practice, the Pipage rounding-based scheme yields better performance.

13 / 20

LeadCache: Regret-Optimal Caching in Networks

Proof Sketch for Achievability

Following [Cohen et al. 2015], we consider the Gaussian smoothing of the support
function:

φηt (x) = Eγ max
z∈Z

[
〈z , x + ηtγ〉

]
This implies that ∇φηt (X t) = E〈ẑ t , x t〉 and an application of Stein’s lemma gives

(
∇2φηt (X t)

)
p,q =

1

ηt
E(ẑpγq),

where each of the indices p and q are (user, file) tuples.

Using Taylor’s series expansion, the regret can be bounded as

E(RT) ≤ φη(X 1)︸ ︷︷ ︸
Gaussian Complexity

+
T∑
t=1

(
φηt+1 (X t+1)− φηt (X t+1)

)
+

1

2

T∑
t=1

x t∇2φηt (X̃ t)x t .

The final regret bound is obtained by carefully bounding each of the above three
terms by exploiting the structure of the problem.

14 / 20

LeadCache: Regret-Optimal Caching in Networks

Proof sketch for the Minimax Lower Bound

We use Probabilistic methods with statistically dependent file requests - all users
request the same file chosen uniformly at random

The non-linearity of the reward function makes evaluation of the optimal offline
reward OPT* challenging

Need to compute E(maxall joint configurations[Total Hits])

However, OPT* can be lower bounded by a class of cache configurations satisfying
a certain local exclusivity property

All caches connected to each user host distinct files

Observation: Under the local-exclusivity constraint, the reward function becomes
Linear

To obtain the tightest lower bound for OPT*, we need to design the best caching
configuration y⊥ with the local exclusivity constraint

15 / 20

LeadCache: Regret-Optimal Caching in Networks

Ingredient 1: Brook’s theorem for Graph Coloring

1 32 4 5 ... χ

fred(1) ≥ fblue(2) ≥ fgreen(3) ≥ fyellow(4)
≥ . . . ≥ fpink(χ)

v =
∑T
t=1 αt =

1

2

...

C

C + 1

...

2C

(J − 1)C + 1

...

JC

...

2k

1

2

χ

Cache 1

Cache 2

Cache J

...

Most popular half

Construction of the caching configuration y⊥.

Using Brook’s theorem, we find a near-minimal coloring of the caches so that local
exclusivity holds

The most frequent half of the files are assigned to the caches;
caches with distinct colors receive distinct files.

16 / 20

LeadCache: Regret-Optimal Caching in Networks

Ingredient 2: Balls-into-Bins

The reward accrued by the offline optimal policy is closely related to the load
MC (T) in the most-occupied C bins when T balls are thrown u.a.r. into 2C bins

bin 1 bin 2 bin 3 bin 4 bin
2C − 1

bin 2C

Super bin 2Super bin 1 Super bin C

Illustrating the construction of Super bins

To lower bound this quantity, we pair up the bins and lower bound MC (T) by the
summation of max-load in each pair, which yields

E(MC (T)) ≥
T

2
+

√
CT

2π
−Θ(

1
√
T

).

17 / 20

LeadCache: Regret-Optimal Caching in Networks

Experimental Results

Dataset: CDN trace with ∼ 375K requests. We consider n = 30 users randomly
connected to m = 15 caches.

0.4 0.6 0.8 1.0
0

10

20

30

40

50 Belady (offline)

LRU

LFU

LeadCache-Pipage

SIGMETRICS20

LeadCache-Madow

N
or

m
a

li
ze

d
d

en
si

ty

Average cache-hit rate

2 4 6 8
0

2

4

6

8

10
Belady (offline)

LRU

LFU

LeadCache-Pipage

SIGMETRICS20

LeadCache-Madow

N
or

m
a

li
ze

d
d

en
si

ty

Average download rate per cache

Impact: 1.8× increase in the hit-rates over the state-of-the-art
Code available at https://github.com/AbhishekMITIITM/LeadCache-NeurIPS21

18 / 20

https://github.com/AbhishekMITIITM/LeadCache-NeurIPS21

LeadCache: Regret-Optimal Caching in Networks

Open Problems

The classical notion of regret compares the performance of a policy against a
clairvoyant but fixed action throughout

In dynamic environments, fixed actions typically yield poor performance

A stronger guarantee was obtained by Feder et al. [1992] who obtained sublinear
regret guarantee against all Finite State Machine Predictors for the Binary
prediction problem

They combine Lempel-Ziv (78) parsing with online learning methods for achieving this
result

Problem 1: Is it possible to extend the LeadCache policy, in particular, and OCO
algorithms, in general, to have a sublinear regret guarantee against all Finite State
Machines?

Problem 2: If some users request unpopular content, LeadCache might virtually
ignore them. How to design a network caching policy that is fair to all users?

19 / 20

LeadCache: Regret-Optimal Caching in Networks

Thanks

Thank You!

For questions, please email me at: abhishek.sinha@ee.iitm.ac.in

20 / 20

