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Unsupervised Representation Learning

* DNNs have achieved a remarkable success in various applications
* They often require a massive amount of manually labeled data

* The annotation cost is often expensive because
* Itis time-consuming: e.g., annotating bounding boxes
* |t requires expert knowledge: e.g., medical diagnosis and retrosynthesis

* Hence, collecting unlabeled samples is easier than doing labeled samples

* Question: How to utilize the unlabeled samples for representation learning?



Recent Advances in Self-supervised Learning

 State-of-the-art self-supervised learning methods have shown promising results
* The SSL methods remarkably reduce the gap to supervised learning
* They commonly learn augmentation-invariant representations

Repel

Attract

27 Attract R

input
image

‘ : m
‘ “; S
Augmentatlon Augmentation

~

t’

Jo

r

3\ @&
go

projection

) L

fe

g

N\

prediction
do0

q0(z0) : online
loss

—44—> sg(2f) ¥ target

sg



Recent Advances in Self-supervised Learning

 State-of-the-art self-supervised learning methods have shown promising results
* The SSL methods remarkably reduce the gap to supervised learning
* They commonly learn augmentation-invariant representations

Repel Contrastive methods (e.g., SimCLR [1] and MoCo [2])

Attract Attract

exp(sim(zy,2z3)/7)
exp(sim(z1,22)/7) + ), exp(sim(z;,2z")/7)

L = —log

Maximize sim(zq,22) Minimize sim(z1,2’)

Augmentation Augmentation

e 3 1

[1] Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020
[2] He et al., Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020 4



Recent Advances in Self-supervised Learning

 State-of-the-art self-supervised learning methods have shown promising results
* The SSL methods remarkably reduce the gap to supervised learning

* They commonly learn augmentation-invariant representations

Non-contrastive methods (e.g., BYOL [3] and SimSiam [4])
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[3] Grill et al., Bootstrap Your Own Latent: A New Approach to Self-supervised Learning, 2020
[4] Chen & He, Exploring Simple Siamese Representation Learning, 2020
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Recent Advances in Self-supervised Learning

» State-of-the-art self-supervised learning methods have shown promising results

* The SSL methods remarkably reduce the gap to supervised learning
* They commonly learn augmentation-invariant representations

* Augmentations:

e Geometric augmentations: Cropping, Resizing, Flipping

* Color augmentations: Color Jittering, Color Dropping, Gaussian Blurring

Commonly used augmentations for invariant representation learning

(f) Rotate {90°, 180°, 270°}

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering



Motivation

e Total = (a) augmentation-invariant information + (b) augmentation-aware information

Original image Augmented image

A5

Augmentation

Color Dropping

Yellow flower Flower of unknown color

* (a) augmentation-invariant information = Flower
* (b) augmentation-aware information = Yellow

* Q) Is augmentation-aware information not or less important?



Motivation

* Q) Is augmentation-aware information not or less important?

* Learning augmentation-invariance may hurt performance in certain downstream tasks

e Learning invariance to color augmentations (e.g., color dropping) forces the representations of
color-modified and original images to be same as much as possible

| / i

Which flower is yellow? :i,

* It degrades the representation qualities for color-sensitive downstream tasks such as flower classification



Motivation

* Q) Is augmentation-aware information not or less important?

* Learning augmentation-invariance may hurt performance in certain downstream tasks

e Learning invariance to color augmentations (e.g., color dropping) forces the representations of
color-modified and original images to be same as much as possible

V.S.

* It degrades the representation qualities for color-sensitive downstream tasks such as flower classification

* Q) How to learn more generalizable and transferable representations?

* Our goal is to prevent information loss from learning augmentation-invariance, i.e.,
to learn both augmentation-invariant and augmentation-aware representations



AugSelf: Auxiliary Augmentation-aware Self-supervision

* Notations
* Original image x
* Augmentation function ¢, where w ~ ) is augmentation-specific parameter
 Augmented view v = t,,(xX)

* Examples:

| Random cropping | Horizontal flipping

v_ WP = 1[v is flipped]
. .,

WP = (ycenten Zcenter H7 W)
= (0.4,0.3,0.6,0.4)

Color jittering Gaussian blurring
weolor — (Pbzigies Aconrrasts Auses M) WP = std. dev. of Gaussian kernel
=(0.3,1.0,0.8,1.0) =1.0

* Augmentation parameters w explain how the image is modified

* Main idea is to predict the augmentation parameters from augmented views
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AugSelf: Auxiliary Augmentation-aware Self-supervision

@#ﬁ Zo Augmentation-invariant Learning
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Augmentation-aware Learning
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Prediction loss (e.g., regression)
LAugSelf(x7w17w2; 0) =

- ZaugE.AAugSeH Laug((bgug(fe (Vl)a f9 (V2))7 aif )’

Waifs
t An augmentation type (e.g., crop, jittering)
* AugSelf learns to predict difference between augmentation parameters of two views
* This prediction task encourages f (x) to learn augmentation-aware information
* This design allows to incorporate AugSelf into existing frameworks without additional training costs
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Analysis: Mutual Information

* AugSelf preserves the augmentation-aware information
* Incg(C; Z) = the mutual information between color histogram (i.e., C) and representation (i.e., Z = f(x))
* AugSelf significantly improves the linear evaluation accuracy in the color-sensitive downstream tasks

Mutual information
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Ablation Study: All Information Is Useful

* Both color/geometric information is useful in various downstream tasks
e Learn color information by predicting Color Jittering parameters
* Learn geometric information by predicting Random Cropping parameters

Apugser£ STL10 CIFAR10 CIFAR100 Food MIT67 Pets Flowers

0 85.19 82.35 54.90 33.99 39.15 4490 59.19
Aug. parameters {crop} 85.98 82.82 55.78 35.68 4321 47.10 62.05
we predict {color} 85.55 82.90 58.11 40.32 4356 4785 71.08

{crop,color} 85.70 82.76 58.65 41.58 45.67 4842 7218

* The improvement depends on the characteristic of the downstream tasks
* Learning all information achieves best performance in most downstream tasks
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Experimental Results: Fine-grained Classification Tasks

* AugSelf consistently improves Supervised Learning, SimSiam, MoCo in various settings
* 11 fine-grained classification benchmarks

Method CIFAR10 CIFAR100 Food MIT67 Pets Flowers Caltechl01 Cars Aircraft DTD SUN397

ImageNet100-pretrained ResNet-50

SimSiam 86.89 66.33 6148 6575 74.69  88.06 84.13 48.20 48.63 65.11 50.60
+ AugSelf 88.80 70.27 65.63 67.76 7634 90.70 85.30 4752 49.76 6729  52.28
MoCo v2 84.60 61.60 5937 61.64 70.08 8243 77.25 3386 4121 6447 46.50
+ AugSelf 85.26 63.90 60.78 63.36 7346 85.70 78.93 3735 3947 66.22  48.52
Supervised 86.16 62.70 5389 5291 7350 76.09 77.53 30.61 36.78 61.91 40.59
+ AugSelf 86.06 63.77 5584 54.63 7481 78.22 77.47 3126 38.02 62.07 4149
STL10-pretrained ResNet-18
SimSiam 82.35 54.90 3399 39.15 4490 59.19 66.33 16.85 26.06 42.57 29.05
+ AugSelf 82.76 58.65 41.58 45.67 4842 72.18 72,75 21.17 3317 47.02 34.14
MoCo v2 81.18 3375 3369 39.01 4234 61.01 64.15 16.09 2663 4120  28.50

+ AugSelf 82.45 57.17 3691 41.67 4380 66.96 66.02 17.53 28.02 4521  30.93




Experimental Results: Fine-grained Classification Tasks

* AugSelf consistently improves Supervised Learning, SimSiam, MoCo in various settings
e 11 fine-grained classification benchmarks

Method CIFAR10 CIFAR100 Food MIT67 Pets Flowers Caltechl01 Cars Aircraft DTD SUN397

ImageNet100-pretrained ResNet-50
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Experimental Results: Few-shot Classification Tasks

* AugSelf consistently improves Supervised Learning, SimSiam, MoCo in various settings

* 11 fine-grained classification benchmarks

* 3 few-shot classification benchmarks

(5,5) —> 5-way 5-shot task

FC100 CUB200 Plant Disease
Method ,1) (9:9) G, 1) (3:49) S, D
ImageNet100-pretrained ResNet-50
SimSiam 36.19+036 50.36+038 45.56+047 62.48+048 75.72+046 89.94+0.31
+ AugSelf (ours) 39.37:x040 55.27:038 48.08:047 66.27:046 77.93:046 91.52:0.29
MoCo v2 31.67+033 43.88+038 41.67+047 56.92:047 65.73:049 84.98+0.36
+ AugSelf (ours) 35.02:036 48.77:039 44.17:048 57.35:048 71.80:047 87.81:0.33
Supervised 33.15+033 46.59+037 46.57+048 63.69+046 68.95+047 88.77+0.30
+ AugSelf (ours) 34.70:035 48.89:038 47.58:048 65.31:045 70.82:046 89.77:0.29
STL10-pretrained ResNet-18

SimSiam 36.72+035 51.49:036 37.97+043 50.61:045 58.13:050 75.98+0.40
+ AugSelf (ours) 40.68:0.39 56.26+038 41.60:0.42 56.33:0.44 62.85:049 81.14:0.37
MoCo v2 35.69:034 49.26+036 37.62x042 50.71:044 57.87:048 75.9820.40
+ AugSelf (ours) 39.66:039 55.58:039 38.33:041 51.93:044 60.78:050 78.76:0.38
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Experimental Results: Object Localization

* AugSelf consistently improves Supervised Learning, SimSiam, MoCo in various settings
* 11 fine-grained classification benchmarks
» 3 few-shot classification benchmarks
* Object localization on CUB200 benchmark

Method Error

SimSiam 0.00462
+ AugSelf  0.00335

MoCo 0.00487
+ AugSelf  0.00429

Supervised 0.00520
+ AugSelf  0.00473

w/o SelfAug

w/ SelfAug

Table 4: 45 errors of bounding  Figure 4: Examples of boundlng box predlctlons on CUB200. Blue
box predictions on CUB200.  and red boxes are ground-truth and model prediction, respectively.
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Experimental Results: Retrieval

* AugSelf consistently improves Supervised Learning, SimSiam, MoCo in various settings
* 11 fine-grained classification benchmarks
» 3 few-shot classification benchmarks
* Object localization on CUB200 benchmark

e Quantitative analysis (based on retrieval)

Nearest neighbors

Query

(a) SimSiam (b) SimSiam + AugSelf
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Conclusion

* We propose AugSelf for learning more transferable and generalizable representations

* AugSelf encourages to preserve augmentation-aware information by learning the difference of
augmentation parameters between two randomly augmented samples

» AugSelf can easily be incorporated into recent state-of-the-art self-supervised learning methods with a
negligible additional training cost

e Extensive experiments demonstrate that AugSelf consistently improves the transferability of
representations learned by supervised and unsupervised methods in various transfer learning scenarios

Thank you for your attention!
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