Improving Transferability of Representations via Augmentation-Aware Self-Supervision

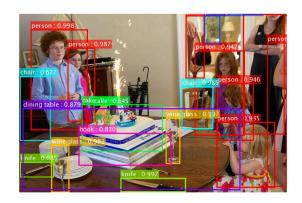
NeurIPS 2021

Hankook Lee¹ Kibok Lee²³ Kimin Lee⁴ Honglak Lee²⁵ Jinwoo Shin¹

¹Korea Advanced Institute of Science and Technology ²University of Michigan ³Amazon Web Services ⁴University of California, Berkeley ⁵I G Al Research

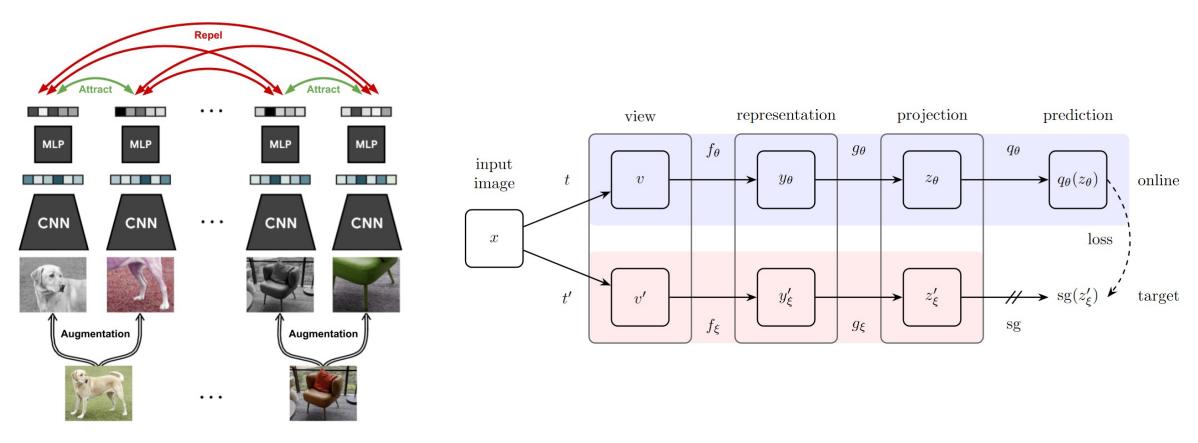
Unsupervised Representation Learning

- DNNs have achieved a **remarkable success** in various applications
 - They often require a massive amount of manually labeled data
 - The annotation cost is often expensive because
 - It is **time-consuming**: e.g., annotating bounding boxes
 - It requires **expert knowledge**: e.g., medical diagnosis and retrosynthesis

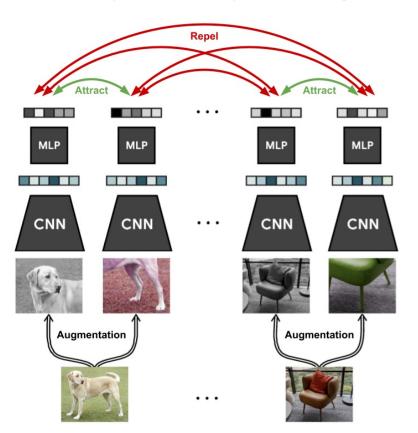


- Hence, collecting unlabeled samples is easier than doing labeled samples
- Question: How to utilize the unlabeled samples for representation learning?

- State-of-the-art self-supervised learning methods have shown promising results
 - The SSL methods remarkably reduce the gap to supervised learning
 - They commonly learn augmentation-invariant representations



- State-of-the-art self-supervised learning methods have shown promising results
 - The SSL methods remarkably reduce the gap to supervised learning
 - They commonly learn augmentation-invariant representations



Contrastive methods (e.g., SimCLR [1] and MoCo [2])

$$\mathcal{L} = -\log \frac{\exp(\operatorname{sim}(\mathbf{z}_1, \mathbf{z}_2)/\tau)}{\exp(\operatorname{sim}(\mathbf{z}_1, \mathbf{z}_2)/\tau) + \sum_{\mathbf{z}'} \exp(\operatorname{sim}(\mathbf{z}_1, \mathbf{z}')/\tau)}$$

Maximize $sim(\mathbf{z}_1, \mathbf{z}_2)$

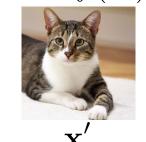
Minimize $sim(\mathbf{z}_1, \mathbf{z}')$

$$\mathbf{z}_1 = f(\mathbf{x}_1)$$
 $\mathbf{z}_2 = f(\mathbf{x}_2)$ $\mathbf{z}' = f(\mathbf{x}')$

 \mathbf{X}_1

$$\mathbf{z}_2 = f(\mathbf{x}_2)$$

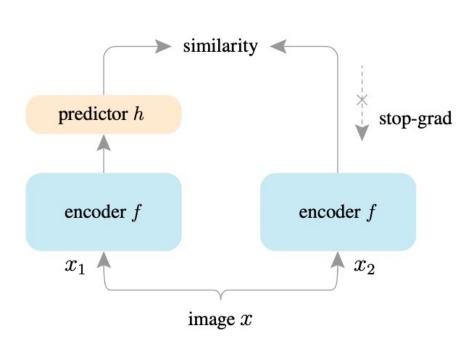
$$\mathbf{z}' = f(\mathbf{x}')$$



 \mathbf{X}_2

[1] Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020 [2] He et al., Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

- State-of-the-art self-supervised learning methods have shown promising results
 - The SSL methods remarkably reduce the gap to supervised learning
 - They commonly learn augmentation-invariant representations



Non-contrastive methods (e.g., BYOL [3] and SimSiam [4])

$$egin{aligned} \mathcal{L} &= \|h(\mathbf{z}_1) - \mathtt{stop_grad}(\mathbf{z}_2)\|_2^2 \ &
abla \mathbb{E}[\mathcal{L}] &=
abla \mathbb{E}[\|h^\star(\mathbf{z}_1) - \mathbf{z}_2\|_2^2] \ &=
abla \mathbb{E}[\|\mathbb{E}[\mathbf{z}_2|\mathbf{z}_1] - \mathbf{z}_2\|_2^2] \ &=
abla \mathbb{E}\left[\sum_i \mathrm{Var}(\mathbf{z}_2^{(i)}|\mathbf{z}_1)\right] \end{aligned}$$

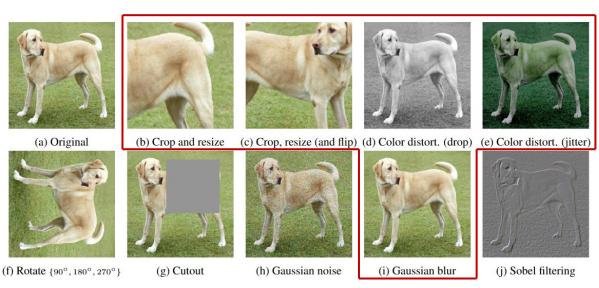
$$\mathbf{z}_1 = f(\mathbf{x}_1)$$
 $\mathbf{z}_2 = f(\mathbf{x}_2)$

 \mathbf{X}_1

 \mathbf{X}_2

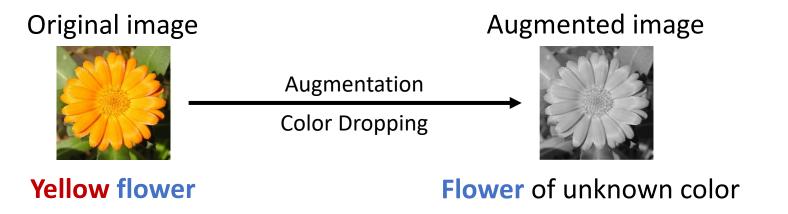
- State-of-the-art self-supervised learning methods have shown promising results
 - The SSL methods remarkably reduce the gap to supervised learning
 - They commonly learn augmentation-invariant representations
 - Augmentations:
 - Geometric augmentations: Cropping, Resizing, Flipping
 - Color augmentations: Color Jittering, Color Dropping, Gaussian Blurring

Commonly used augmentations for invariant representation learning



Motivation

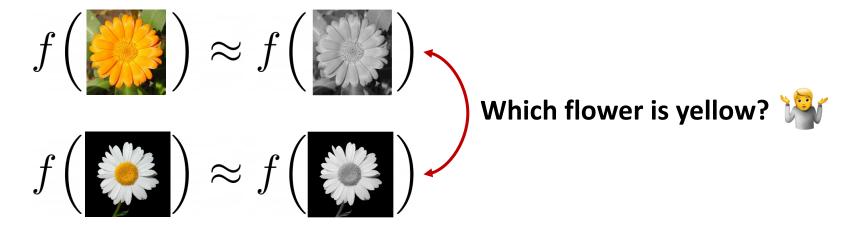
• Total = (a) augmentation-invariant information + (b) augmentation-aware information



- (a) augmentation-invariant information = Flower
- (b) augmentation-aware information = Yellow
- Q) Is augmentation-aware information not or less important?

Motivation

- Q) Is augmentation-aware information not or less important?
- Learning augmentation-invariance may hurt performance in certain downstream tasks
 - Learning invariance to color augmentations (e.g., color dropping) forces the representations of color-modified and original images to be same as much as possible



It degrades the representation qualities for color-sensitive downstream tasks such as flower classification

Motivation

- Q) Is augmentation-aware information not or less important?
- Learning augmentation-invariance may hurt performance in certain downstream tasks
 - Learning invariance to color augmentations (e.g., color dropping) forces the representations of color-modified and original images to be same as much as possible

$$f\Big(igotimes_{igoti$$

- It degrades the representation qualities for color-sensitive downstream tasks such as flower classification
- Q) How to learn more generalizable and transferable representations?
- Our goal is to prevent information loss from learning augmentation-invariance, i.e., to learn both augmentation-invariant and augmentation-aware representations

AugSelf: Auxiliary Augmentation-aware Self-supervision

Notations

- Original image x
- Augmentation function t_ω where $\omega\sim\Omega$ is augmentation-specific parameter
- Augmented view ${f v}=t_{\omega}({f x})$
- Examples:

$$\begin{split} \text{Random cropping} \\ \omega^{\text{crop}} &= (y_{\text{center}}, x_{\text{center}}, H, W) \\ &= (0.4, 0.3, 0.6, 0.4) \end{split}$$

Horizontal flipping $\omega^{\mathtt{flip}} = \mathbb{1}[\mathbf{v} \text{ is flipped}]$ = 1

Original image

$$\begin{split} \text{Color jittering} \\ \omega^{\text{color}} &= (\lambda_{\text{bright}}, \lambda_{\text{contrast}}, \lambda_{\text{sat}}, \lambda_{\text{hue}}) \\ &= (0.3, 1.0, 0.8, 1.0) \end{split}$$

Gaussian blurring $\omega^{\tt blur} = {\rm std. \ dev. \ of \ Gaussian \ kernel}$ = 1.0

- Augmentation parameters ω explain how the image is modified
- Main idea is to predict the augmentation parameters from augmented views

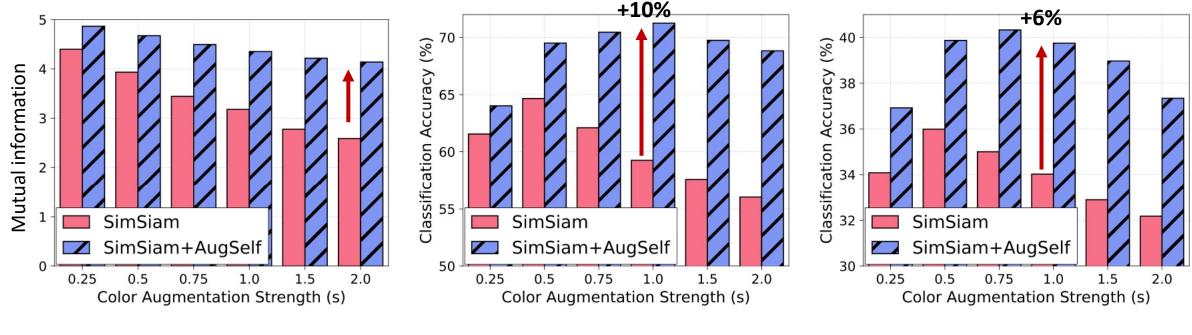
AugSelf: Auxiliary Augmentation-aware Self-supervision



- AugSelf learns to predict difference between augmentation parameters of two views
 - This prediction task encourages f(x) to learn augmentation-aware information
 - This design allows to incorporate AugSelf into existing frameworks without additional training costs

Analysis: Mutual Information

- AugSelf preserves the augmentation-aware information
 - $I_{NCE}(C;Z)$ = the mutual information between color histogram (i.e., C) and representation (i.e., Z=f(x))
 - AugSelf significantly improves the linear evaluation accuracy in the color-sensitive downstream tasks



(a) Mutual information

(b) STL10 \rightarrow Flowers

(c) STL10 \rightarrow Food

Ablation Study: All Information Is Useful

- Both color/geometric information is useful in various downstream tasks
 - Learn color information by predicting Color Jittering parameters
 - Learn geometric information by predicting Random Cropping parameters

	$\mathcal{A}_{ t AugSelf}$	STL10	CIFAR10	CIFAR100	Food	MIT67	Pets	Flowers
[- Ø	85.19	82.35	54.90	33.99	39.15	44.90	59.19
Aug. parameters	$\{\mathtt{crop}\}$	85.98	82.82	55.78	35.68	43.21	47.10	62.05
we predict	{color}	85.55	82.90	58.11	40.32	43.56	47.85	71.08
·	[crop, color]	85.70	82.76	58.65	41.58	45.67	48.42	72.18

- The improvement depends on the characteristic of the downstream tasks
- Learning all information achieves best performance in most downstream tasks

Experimental Results: Fine-grained Classification Tasks

- AugSelf consistently improves Supervised Learning, SimSiam, MoCo in various settings
 - 11 fine-grained classification benchmarks

Method	CIFAR10	CIFAR100	Food	MIT67	Pets	Flowers	Caltech101	Cars	Aircraft	DTD	SUN397
	ImageNet100-pretrained ResNet-50										
SimSiam	86.89	66.33	61.48	65.75	74.69	88.06	84.13	48.20	48.63	65.11	50.60
+ AugSelf	88.80	70.27	65.63	67.76	76.34	90.70	85.30	47.52	49.76	67.29	52.28
MoCo v2	84.60	61.60	59.37	61.64	70.08	82.43	77.25	33.86	41.21	64.47	46.50
+ AugSelf	85.26	63.90	60.78	63.36	73.46	85.70	78.93	37.35	39.47	66.22	48.52
Supervised	86.16	62.70	53.89	52.91	73.50	76.09	77.53	30.61	36.78	61.91	40.59
+ AugSelf	86.06	63.77	55.84	54.63	74.81	78.22	77.47	31.26	38.02	62.07	41.49
	STL10-pretrained ResNet-18										
SimSiam	82.35	54.90	33.99	39.15	44.90	59.19	66.33	16.85	26.06	42.57	29.05
+ AugSelf	82.76	58.65	41.58	45.67	48.42	72.18	72.75	21.17	33.17	47.02	34.14
MoCo v2	81.18	53.75	33.69	39.01	42.34	61.01	64.15	16.09	26.63	41.20	28.50
+ AugSelf	82.45	57.17	36.91	41.67	43.80	66.96	66.02	17.53	28.02	45.21	30.93

Experimental Results: Fine-grained Classification Tasks

- AugSelf consistently improves Supervised Learning, SimSiam, MoCo in various settings
 - 11 fine-grained classification benchmarks

Method	CIFAR10	CIFAR100 Fo	ood MITe	7 Pets	Flowers	Caltech101	Cars	Aircraft	DTD	SUN
	ImageNet100-pretrained ResNet-50									
SimSi		-								0.6
+ Aug	Method	AugSelf (ours)	STL10	CIFAR10	CIFAR100) Food	MIT67	Pets	Flowers	- 2.2
MoCo + Aug	SimCLR [2]	✓	84.87 84.99	78.93 80.92	48.94 53.64	31.97 36.21	36.82 40.62	43.18 46.51	56.20 64.31	- 6.5 3.5
Super + Aug	BYOL [12]	✓	86.73 86.79	82.66 83.60	55.94 59.66	37.30 42.89	42.78 46.17	50.21 52.45	66.89 74.07	- 0.5 1.4
SimSi + Aug	SWAV [11]	✓	82.21 82.57	81.60 82.00	52.00 55.10	29.78 33.16	36.69 39.13	37.68 40.74	53.01 61.69	9.0 4.1
MoCo + AugSe	f 82.45	57.17 36		7 43.80	66.96	66.02	17.53	28.02	45.21	30.9

Experimental Results: Few-shot Classification Tasks

- AugSelf consistently improves Supervised Learning, SimSiam, MoCo in various settings
 - 11 fine-grained classification benchmarks
 - 3 few-shot classification benchmarks

	FC	100	CUB200		Plant I	Disease	
Method	(5, 1)	(5, 5)	(5, 1)	(5, 5)	(5, 1)	(5, 5)	→ 5-way 5-shot
	Im	ageNet100-p	retrained Re	esNet-50			
SimSiam	36.19±0.36	50.36±0.38	45.56±0.47	62.48±0.48	75.72±0.46	89.94±0.31	
+ AugSelf (ours)	39.37 ± 0.40	55.27 ± 0.38	48.08±0.47	66.27 ± 0.46	77.93 ± 0.46	91.52±0.29	
MoCo v2	31.67±0.33	43.88±0.38	41.67±0.47	56.92±0.47	65.73±0.49	84.98±0.36	
+ AugSelf (ours)	35.02 ± 0.36	48.77±0.39	44.17±0.48	57.35 ± 0.48	71.80 ± 0.47	87.81±0.33	
Supervised	33.15±0.33	46.59±0.37	46.57±0.48	63.69±0.46	68.95±0.47	88.77±0.30	
+ AugSelf (ours)	34.70±0.35	48.89±0.38	47.58±0.48	65.31±0.45	70.82 ± 0.46	89.77±0.29	
		STL10-pret	rained ResNe	et-18			
SimSiam	36.72±0.35	51.49±0.36	37.97±0.43	50.61±0.45	58.13±0.50	75.98±0.40	
+ AugSelf (ours)	40.68±0.39	56.26±0.38	41.60±0.42	56.33 ± 0.44	62.85 ± 0.49	81.14±0.37	
MoCo v2	35.69±0.34	49.26±0.36	37.62±0.42	50.71±0.44	57.87±0.48	75.98±0.40	
+ AugSelf (ours)	39.66±0.39	55.58±0.39	38.33 ± 0.41	51.93±0.44	60.78 ± 0.50	78.76 ± 0.38	

Experimental Results: Object Localization

- AugSelf consistently improves Supervised Learning, SimSiam, MoCo in various settings
 - 11 fine-grained classification benchmarks
 - 3 few-shot classification benchmarks
 - Object localization on CUB200 benchmark

Method	Error
SimSiam	0.00462
+ AugSelf	0.00335
MoCo	0.00487
+ AugSelf	0.00429
Supervised	0.00520
+ AugSelf	0.00473

Table 4: ℓ_2 errors of bounding box predictions on CUB200.

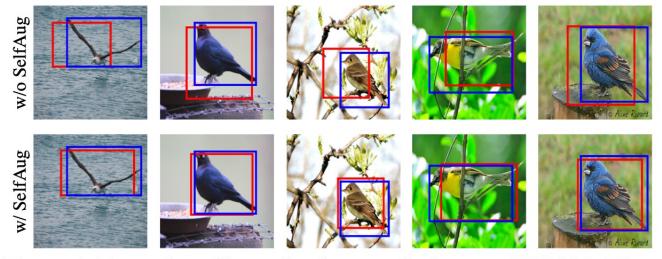
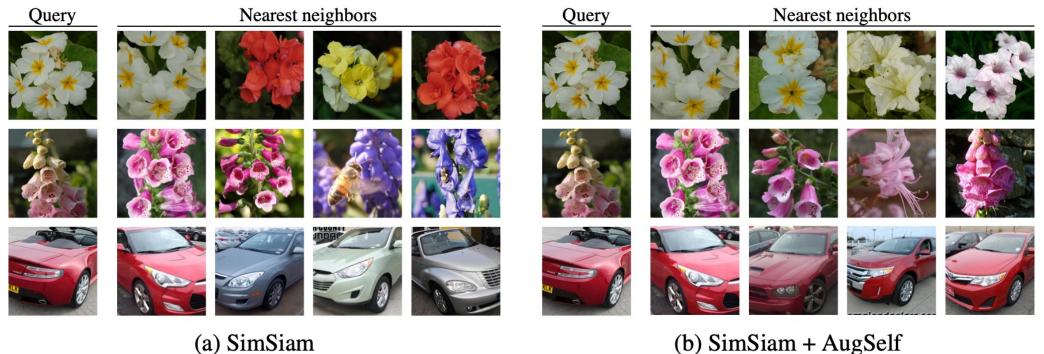


Figure 4: Examples of bounding box predictions on CUB200. Blue and red boxes are ground-truth and model prediction, respectively.

Experimental Results: Retrieval

- AugSelf consistently improves Supervised Learning, SimSiam, MoCo in various settings
 - 11 fine-grained classification benchmarks
 - 3 few-shot classification benchmarks
 - Object localization on CUB200 benchmark
- Quantitative analysis (based on retrieval)



(b) SimSiam + AugSelf

Conclusion

- We propose AugSelf for learning more transferable and generalizable representations
 - AugSelf encourages to preserve augmentation-aware information by learning the difference of augmentation parameters between two randomly augmented samples
 - AugSelf can easily be incorporated into recent state-of-the-art self-supervised learning methods with a negligible additional training cost
 - Extensive experiments demonstrate that AugSelf consistently improves the transferability of representations learned by supervised and unsupervised methods in various transfer learning scenarios

Thank you for your attention!