The decomposition of the higher-order homology embedding constructed from the k-Laplacian

FINDING "INDEPENDENT" LOOPS IN A MANIFOLD

Yu-Chia Chen (yuchaz@uw.edu) Electrical & Computer Engineering University of Washington December, 2021 NEURAL INFORMATION PROCESSING SYSTEMS

NeurIPS 2021

Joint work with professor Marina Meilă

Department of Statistics, University of Washington.
 mmp@uw.edu

The slides can be downloaded in https://bit.ly/chen_meila_21_slides

MOTIVATION

Embedding of spectral clustering

- Structure of the embedding is known:
 - Orthogonal cone structure (OCS) [Schiebinger et al., 2015]
- Clusters (red/blue) can be identified from the embedding
- Spectral clustering ≔ 0-homology embedding

What about the higher-order cases?

- Empirical observation [Ebli and Spreemann, 2019]
 - Embedding is a "union" of subspaces
- Localize the "subcomponents" of a manifold

Main contribution

- A theoretical analysis of the above observation
 - Using the concepts of connected sum and matrix perturbation theory
- Data-driven decomposition algorithm + identifying loops (side product

MOTIVATION

Embedding of spectral clustering

- Structure of the embedding is known:
 - Orthogonal cone structure (OCS) [Schiebinger et al., 2015]
- Clusters (red/blue) can be identified from the embedding
- Spectral clustering := 0-homology embedding

What about the higher-order cases?

- Empirical observation [Ebli and Spreemann, 2019]
 - Embedding is a "union" of subspaces
- Localize the "subcomponents" of a manifold

Main contribution

- A theoretical analysis of the above observation
 - Using the concepts of connected sum and matrix perturbation theory
- Data-driven decomposition algorithm + identifying loops (side product

MOTIVATION

Embedding of spectral clustering

- Structure of the embedding is known:
 - Orthogonal cone structure (OCS) [Schiebinger et al., 2015]
- Clusters (red/blue) can be identified from the embedding
- Spectral clustering := 0-homology embedding

What about the higher-order cases?

- Empirical observation [Ebli and Spreemann, 2019]
 - Embedding is a "union" of subspaces
- Localize the "subcomponents" of a manifold

Main contribution

- A theoretical analysis of the above observation
 - Using the concepts of connected sum and matrix perturbation theory
- Data-driven decomposition algorithm + identifying loops (side product)

DISCRETE k-HODGE LAPLACIAN AND MANIFOLD GEOMETRY

(Finite samples from $\mathcal M$)		(Want to approximate)		
Discrete		Continuous		
Simplicial complex k-cochain Boundary matrix Coboundary matrix Discrete k-Laplacian k-homology space	$\begin{aligned} & SC_{\ell} \\ & \boldsymbol{\omega}_k \\ & \boldsymbol{B}_k \\ & \boldsymbol{B}_k^\top \\ & \boldsymbol{\mathcal{L}}_k \\ & \boldsymbol{\mathcal{L}}_k \\ & \boldsymbol{\mathcal{H}}_k \subseteq \mathbb{R}^{n_k} \end{aligned}$	Manifold k-form Codifferential operator Exterior derivative Laplace-de Rham operator k-homology group	$\begin{array}{c} \mathfrak{M} \\ \zeta_k \\ \delta_k \\ d_{k-1} \\ \Delta_k \\ H_k(\mathfrak{M},\mathbb{R}) \end{array}$	

Simplicial complex

- $\blacktriangleright SC_{\ell} = (\Sigma_0, \Sigma_1, \cdots, \Sigma_{\ell}) = (V, E, T, \cdots, \Sigma_{\ell})$
- $\blacktriangleright \ n_k \coloneqq |\Sigma_k|$
- Clique complex of **G**
 - ▶ fill all triangles, tetrahedrons, ..., (all k-cliques) in G

DISCRETE k-HODGE LAPLACIAN AND MANIFOLD GEOMETRY

(Finite samples from ${\mathfrak M}$)		(Want to approximate)	
Discrete		Continuous	
Simplicial complex k-cochain Boundary matrix Coboundary matrix Discrete k-Laplacian k-homology space	$\begin{array}{c} SC_\ell\\ \boldsymbol{\omega}_k\\ \mathbf{B}_k\\ \mathbf{B}_k^\top\\ \boldsymbol{\mathcal{L}}_k\\ \boldsymbol{\mathcal{L}}_k\\ \boldsymbol{\mathcal{H}}_k\subseteq \mathbb{R}^{n_k} \end{array}$	Manifold k-form Codifferential operator Exterior derivative Laplace-de Rham operator k-homology group	$ \begin{array}{c} \mathcal{M} \\ \zeta_k \\ \delta_k \\ \mathbf{d}_{k-1} \\ \mathbf{\Delta}_k \\ \mathbf{H}_k(\mathcal{M}, \mathbb{R}) \end{array} $

Symmetrized k-Laplacians [Horak and Jost, 2013]

$$\mathcal{L}_k = \underbrace{\mathbf{A}_k^\top \mathbf{A}_k}_{\mathcal{L}_k^{\text{down}}} + \underbrace{\mathbf{A}_{k+1} \mathbf{A}_{k+1}^\top}_{\mathcal{L}_k^{\text{up}}}.$$

$$\blacksquare \mathbf{A}_{\ell} \coloneqq \mathbf{W}_{\ell-1}^{-1/2} \mathbf{B}_{\ell} \mathbf{W}_{\ell}^{1/2}$$

- Normalized boundary matrix
- $\blacksquare \ \mathcal{L}_0 = \mathbf{A}_1 \mathbf{A}_1^\top = \mathbf{I} \mathbf{D}^{-1/2} \mathbf{K} \mathbf{D}^{-1/2}$
 - Symmetrized graph Laplacian

•
$$\mathcal{L}_k \in \mathbb{R}^{n_k \times n_k}$$

DISCRETE k-HODGE LAPLACIAN AND MANIFOLD GEOMETRY

(Finite samples from ${\mathfrak M}$)		(Want to approximate)		
Discrete		Continuous		
Simplicial complex k-cochain Boundary matrix Coboundary matrix Discrete k-Laplacian k-homology space	SC_{ℓ} \mathcal{W}_{k} B_{k} B_{k}^{\top} \mathcal{L}_{k} $\mathcal{H}_{k} \subseteq \mathbb{R}^{n_{k}}$	Manifold k -form Codifferential operator Exterior derivative Laplace-de Rham operator k -homology group	$\begin{array}{c} \mathcal{M} \\ \tilde{\zeta}_{k} \\ \tilde{\delta}_{k} \\ \mathbf{d}_{k-1} \\ \Delta_{k} \\ \mathbf{H}_{k}(\mathcal{M}, \mathbb{R}) \end{array}$	

- k-homology space: ℋ_k := ker(ℒ_k) [Lim, 2020, Warner, 2013]
- **k**th Betti number $\beta_k \coloneqq \dim(\mathcal{H}_k)$
- k-homology embedding $Y \in \mathbb{R}^{n_k \times \beta_k}$ is the basis of \mathcal{H}_k
- Can estimate a basis of vector fields from Y for k = 1[Chen et al., 2021]

CONNECTED SUM AND MANIFOLD (PRIME) DECOMPOSITION

The connected sum [Lee, 2013] $\mathcal{M} = \mathcal{M}_1 \sharp \mathcal{M}_2$:

- 1. removing two $d\text{-dimensional "disks" from <math display="inline">\mathcal{M}_1$ and \mathcal{M}_2 (shaded area)
- 2. gluing together two manifolds at the boundaries

Existence of prime decomposition: factorize a manifold $\mathfrak{M} = \mathfrak{M}_1 \sharp \cdots \sharp \mathfrak{M}_{\kappa}$ into \mathfrak{M}_i 's so that \mathfrak{M}_i is a prime manifold

- d = 2: classification theorem of surfaces [Armstrong, 2013]
- **d** = 3: the uniqueness of the prime decomposition was shown by Kneser-Milnor theorem [Milnor, 1962]
- d ≥ 5: [Bokor et al., 2020] proved the existence of factorization (but they might not be unique)

CONNECTED SUM AND MANIFOLD (PRIME) DECOMPOSITION

The connected sum [Lee, 2013] $\mathcal{M} = \mathcal{M}_1 \sharp \mathcal{M}_2$:

- 1. removing two $d\text{-dimensional "disks" from <math display="inline">\mathcal{M}_1$ and \mathcal{M}_2 (shaded area)
- 2. gluing together two manifolds at the boundaries

Existence of prime decomposition: factorize a manifold $\mathcal{M} = \mathcal{M}_1 \sharp \cdots \sharp \mathcal{M}_{\kappa}$ into \mathcal{M}_i 's so that \mathcal{M}_i is a prime manifold

- **d** = 2: classification theorem of surfaces [Armstrong, 2013]
- d = 3: the uniqueness of the prime decomposition was shown by Kneser-Milnor theorem [Milnor, 1962]
- d ≥ 5: [Bokor et al., 2020] proved the existence of factorization (but they might not be unique)

PROBLEM FORMULATION

NOTATIONS

Theoretic and algorithmic aim

Theoretic aim

- \blacksquare Study the geometric properties of ${\bf Y}$
 - \blacktriangleright Recovering the homology basis of each prime manifold \mathcal{M}_i
 - \blacktriangleright Recover \hat{Y} (localized, support on each $\mathcal{M}_i)$ from Y (coupled, rotation of $\hat{Y})$
- Provide an analogous theorem to the OCS [Meilă and Shi, 2001, Ng et al., 2002, Schiebinger et al., 2015] in spectral clustering (H₀)

Algorithmic aim

- The null space basis of L_k is only identifiable up to a unitary matrix
 - Y is less interpretable than Z!!
- Proposed a data-driven approach to obtain Z from Y
 - Approximate $\hat{\mathbf{Y}}$ with \mathbf{Z}

THEORETIC AND ALGORITHMIC AIM

Theoretic aim

- \blacksquare Study the geometric properties of ${\bf Y}$
 - \blacktriangleright Recovering the homology basis of each prime manifold \mathcal{M}_i
 - \blacktriangleright Recover \hat{Y} (localized, support on each $\mathcal{M}_i)$ from Y (coupled, rotation of $\hat{Y})$
- Provide an analogous theorem to the OCS [Meilă and Shi, 2001, Ng et al., 2002, Schiebinger et al., 2015] in spectral clustering (H₀)

Algorithmic aim

- The null space basis of L_k is only identifiable up to a unitary matrix
 - ► Y is less interpretable than Z!!
- Proposed a data-driven approach to obtain Z from Y
 - \blacktriangleright Approximate \hat{Y} with Z

G Cluster 1 Cluster 2 Out x Cluster 2

CONNECTED SUM AS A MATRIX PERTURBA-

ASSUMPTIONS

- 1. Points are sampled from a decomposable manifold
 - κ -fold connected sum: $\mathcal{M} = \mathcal{M}_1 \sharp \cdots \sharp \mathcal{M}_{\kappa}$
 - ▶ H_k(SC) (discrete) and H_k(M, ℝ) (continuous) are isomorphic. Also for every M_i
 - \blacksquare Works for any consistent method to build \mathcal{L}_k
 - \blacksquare We use our prior work [Chen et al., 2021] for \mathcal{L}_1

2. No k-homology class is created/destroyed during the connected sum

- If $\dim(\mathcal{M}) > k$, then $\mathcal{H}_k(\mathcal{M}_1 \sharp \mathcal{M}_2) \cong \mathcal{H}_k(\mathcal{M}_1) \oplus \mathcal{H}_k(\mathcal{M}_2)$ [Lee, 2013
- [Technical] The eigengap of \mathcal{L}_k is the min of each $\hat{\mathcal{L}}_k^{(\iota)}$: $\delta = \min\{\delta_1, \cdots, \delta_\kappa\}$
- 3. Sparsely connected manifold
 - Not too many triangles are created/destroyed during connected sum (for k = 1,
 - Empirically, the perturbation is small even when ${\mathfrak M}$ is not sparsely connected
 - [Technical] Perturbations of ℓ-simplex set Σℓ are small (εℓ and εℓ are small for ℓ = k, k − 1

ASSUMPTIONS

- 1. Points are sampled from a decomposable manifold
 - κ -fold connected sum: $\mathcal{M} = \mathcal{M}_1 \sharp \cdots \sharp \mathcal{M}_{\kappa}$
 - ▶ H_k(SC) (discrete) and H_k(M, ℝ) (continuous) are isomorphic. Also for every M_i
 - \blacksquare Works for any consistent method to build \mathcal{L}_k
 - \blacksquare We use our prior work [Chen et al., 2021] for \mathcal{L}_1

- 2. No k-homology class is created/destroyed during the connected sum
 - $\blacktriangleright \text{ If } \dim(\mathcal{M}) > k \text{, then } \mathcal{H}_k(\mathcal{M}_1 \sharp \mathcal{M}_2) \cong \mathcal{H}_k(\mathcal{M}_1) \oplus \mathcal{H}_k(\mathcal{M}_2) \text{ [Lee, 2013]}$
 - [Technical] The eigengap of \mathcal{L}_{k} is the min of each $\hat{\mathcal{L}}_{k}^{(ii)}$: $\delta = \min\{\delta_{1}, \cdots, \delta_{\kappa}\}$
- 3. Sparsely connected manifold
 - Not too many triangles are created/destroyed during connected sum (for k = 1)
 - Empirically, the perturbation is small even when ${\mathfrak M}$ is not sparsely connected
 - For l = k, k − 1
 [Technical] Perturbations of l-simplex set Σ_l are small (ε_l and ε'_l are small for l = k, k − 1

ASSUMPTIONS

- 1. Points are sampled from a decomposable manifold
 - κ -fold connected sum: $\mathcal{M} = \mathcal{M}_1 \sharp \cdots \sharp \mathcal{M}_{\kappa}$
 - ▶ H_k(SC) (discrete) and H_k(M, ℝ) (continuous) are isomorphic. Also for every M_i
 - \blacksquare Works for any consistent method to build \mathcal{L}_k
 - \blacksquare We use our prior work [Chen et al., 2021] for \mathcal{L}_1

- 2. No k-homology class is created/destroyed during the connected sum
 - $\blacktriangleright \text{ If } \dim(\mathcal{M}) > k \text{, then } \mathcal{H}_k(\mathcal{M}_1 \sharp \mathcal{M}_2) \cong \mathcal{H}_k(\mathcal{M}_1) \oplus \mathcal{H}_k(\mathcal{M}_2) \text{ [Lee, 2013]}$
 - [Technical] The eigengap of \mathcal{L}_{k} is the min of each $\hat{\mathcal{L}}_{k}^{(ii)}$: $\delta = \min\{\delta_{1}, \cdots, \delta_{\kappa}\}$
- 3. Sparsely connected manifold
 - Not too many triangles are created/destroyed during connected sum (for k = 1)
 - Empirically, the perturbation is small even when ${\mathcal M}$ is not sparsely connected
 - [Technical] Perturbations of ℓ -simplex set Σ_{ℓ} are small (ϵ_{ℓ} and ϵ'_{ℓ} are small) for $\ell = k, k-1$

THEOREM 1

Under Assumptions 1–3, there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_k \times \beta_k}$ such that

$$\left\|\mathbf{Y}_{\mathfrak{N}_{k},:}-\hat{\mathbf{Y}}_{\mathfrak{N}_{k},:}\mathbf{O}\right\|_{F}^{2} \leqslant \frac{8\beta_{k}\left[\left\|\mathsf{DiffL}_{k}^{\mathsf{down}}\right\|^{2}+\left\|\mathsf{DiffL}_{k}^{\mathsf{up}}\right\|^{2}\right]}{\mathsf{min}\{\delta_{1},\cdots,\delta_{\kappa}\}},\tag{1}$$

with

$$\begin{split} \mathsf{DiffL}^{\mathsf{down}}_k \Big\|^2 &\leqslant \left[2\sqrt{\varepsilon'_k} + \varepsilon'_k + \left(1 + \sqrt{\varepsilon'_k} \right)^2 \sqrt{\varepsilon'_{k-1}} + 4\sqrt{\varepsilon_{k-1}} \right]^2 (k+1)^2; \text{ and} \\ & \big\| \mathsf{DiffL}^{\mathsf{up}}_k \big\|^2 \leqslant \left[2\sqrt{\varepsilon'_k} + \varepsilon'_k + 2\varepsilon_k + 4\sqrt{\varepsilon_k} \right]^2 (k+2)^2. \end{split}$$

- Assu. 2: no topology is destroyed/created
- Assu. 3: sparsely connected
- lacksquare $\mathfrak{N}_{\mathbf{k}}$: bound only simplexes that are **not** altered during connected sum

THEOREM 1

Under Assumptions 1–3, there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_k \times \beta_k}$ such that

$$\left\|\mathbf{Y}_{\mathfrak{N}_{k},:}-\hat{\mathbf{Y}}_{\mathfrak{N}_{k},:}\mathbf{O}\right\|_{F}^{2} \leqslant \frac{8\beta_{k}\left[\left\|\mathsf{DiffL}_{k}^{\mathsf{down}}\right\|^{2}+\left\|\mathsf{DiffL}_{k}^{\mathsf{up}}\right\|^{2}\right]}{\min\{\delta_{1},\cdots,\delta_{\kappa}\}},\tag{1}$$

with

$$\begin{split} \left| \mathsf{DiffL}_k^{\mathsf{down}} \right\|^2 &\leqslant \left[2\sqrt{\varepsilon_k'} + \varepsilon_k' + \left(1 + \sqrt{\varepsilon_k'} \right)^2 \sqrt{\varepsilon_{k-1}'} + 4\sqrt{\varepsilon_{k-1}} \right]^2 (k+1)^2; \text{ and} \\ & \left\| \mathsf{DiffL}_k^{\mathsf{up}} \right\|^2 \leqslant \left[2\sqrt{\varepsilon_k'} + \varepsilon_k' + 2\varepsilon_k + 4\sqrt{\varepsilon_k} \right]^2 (k+2)^2. \end{split}$$

- Assu. 2: no topology is destroyed/created
- Assu. 3: sparsely connected
- lacksquare $\mathfrak{N}_{\mathbf{k}}$: bound only simplexes that are **not** altered during connected sum

THEOREM 1

Under Assumptions 1–3, there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_k \times \beta_k}$ such that

$$\left\|\mathbf{Y}_{\mathfrak{N}_{k},:}-\hat{\mathbf{Y}}_{\mathfrak{N}_{k},:}\mathbf{O}\right\|_{F}^{2} \leqslant \frac{8\beta_{k}\left[\left\|\mathsf{DiffL}_{k}^{\mathsf{down}}\right\|^{2}+\left\|\mathsf{DiffL}_{k}^{\mathsf{up}}\right\|^{2}\right]}{\min\{\delta_{1},\cdots,\delta_{\kappa}\}},\tag{1}$$

with

$$\begin{split} \left| \mathsf{DiffL}_k^{\mathsf{down}} \right\|^2 &\leqslant \left[2\sqrt{\varepsilon_k'} + \varepsilon_k' + \left(1 + \sqrt{\varepsilon_k'} \right)^2 \sqrt{\varepsilon_{k-1}'} + 4\sqrt{\varepsilon_{k-1}} \right]^2 (k+1)^2; \text{ and} \\ & \left\| \mathsf{DiffL}_k^{\mathsf{up}} \right\|^2 \leqslant \left[2\sqrt{\varepsilon_k'} + \varepsilon_k' + 2\varepsilon_k + 4\sqrt{\varepsilon_k} \right]^2 (k+2)^2. \end{split}$$

- Assu. 2: no topology is destroyed/created
- Assu. 3: sparsely connected

lacksquare $\mathfrak{N}_{\mathbf{k}}$: bound only simplexes that are **not** altered during connected sum

THEOREM 1

Under Assumptions 1–3, there exists a unitary matrix $\mathbf{O} \in \mathbb{R}^{\beta_k \times \beta_k}$ such that

$$\left\|\mathbf{Y}_{\mathfrak{N}_{k},:}-\hat{\mathbf{Y}}_{\mathfrak{N}_{k},:}\mathbf{O}\right\|_{F}^{2} \leqslant \frac{8\beta_{k}\left[\left\|\mathsf{DiffL}_{k}^{\mathsf{down}}\right\|^{2}+\left\|\mathsf{DiffL}_{k}^{\mathsf{up}}\right\|^{2}\right]}{\min\{\delta_{1},\cdots,\delta_{\kappa}\}},\tag{1}$$

with

$$\begin{split} \left| \mathsf{DiffL}_k^{\mathsf{down}} \right\|^2 &\leqslant \left[2\sqrt{\varepsilon_k'} + \varepsilon_k' + \left(1 + \sqrt{\varepsilon_k'} \right)^2 \sqrt{\varepsilon_{k-1}'} + 4\sqrt{\varepsilon_{k-1}} \right]^2 (k+1)^2; \text{ and} \\ & \left\| \mathsf{DiffL}_k^{\mathsf{up}} \right\|^2 \leqslant \left[2\sqrt{\varepsilon_k'} + \varepsilon_k' + 2\varepsilon_k + 4\sqrt{\varepsilon_k} \right]^2 (k+2)^2. \end{split}$$

- Assu. 2: no topology is destroyed/created
- Assu. 3: sparsely connected
- $\blacksquare \ \mathfrak{N}_k$: bound only simplexes that are **not** altered during connected sum

Decomposition algorithm in the harmonic embedding \mathbf{Y}

Input: \mathbf{Y} (coupled) Output: \mathbf{Z} (localized, approx. of $\hat{\mathbf{Y}}$)

$$\left\| \mathbf{Y}_{\mathfrak{N}_{k},:} - \hat{\mathbf{Y}}_{\mathfrak{N}_{k},:} \mathbf{O} \right\|_{F}^{2} \leqslant \frac{8\beta_{k} \cdot (\cdots)}{\min\{\delta_{1}, \cdots, \delta_{K}\}}$$

Estimate **O** with Independent Component Analysis (ICA)

Classifying any 2-manifold

- $\blacktriangleright \ \mathbb{S}^1 \sharp \mathbb{S}^1 \neq \mathbb{T}^2$ even though $\beta_1 = 2$ for both
- Proposition 4: 1-homology embedding of T^m is an m-dimensional ellipsoid
- Visualize the basis of harmonic vector fields
- Higher-order simplex clustering [Ebli and Spreemann, 2019]
 - Theorem 1 supports their use of subspace clustering algorithm
- Shortest homologous loop detection
 - Proposition 3: a non-trivial loop corresponding to the ith column of the homology embedding can be obtained using Dijkstra algorithm
 - Using the factorized homology embedding Z ensures that each loop corresponds to a single homology class

Classifying any 2-manifold

- $\blacktriangleright \ \mathbb{S}^1 \sharp \mathbb{S}^1 \neq \mathbb{T}^2$ even though $\beta_1 = 2$ for both
- Proposition 4: 1-homology embedding of T^m is an m-dimensional ellipsoid

Visualize the basis of harmonic vector fields

- Higher-order simplex clustering [Ebli and Spreemann, 2019]
 - Theorem 1 supports their use of subspace clustering algorithm
- Shortest homologous loop detection
 - Proposition 3: a non-trivial loop corresponding to the ith column of the homology embedding can be obtained using Dijkstra algorithm
 - Using the factorized homology embedding Z ensures that each loop corresponds to a single homology class

Classifying any 2-manifold

- $\blacktriangleright \ \mathbb{S}^1 \sharp \mathbb{S}^1 \neq \mathbb{T}^2$ even though $\beta_1 = 2$ for both
- Proposition 4: 1-homology embedding of T^m is an m-dimensional ellipsoid
- Visualize the basis of harmonic vector fields
- Higher-order simplex clustering [Ebli and Spreemann, 2019]
 - Theorem 1 supports their use of subspace clustering algorithm
- Shortest homologous loop detection
 - Proposition 3: a non-trivial loop corresponding to the ith column of the homology embedding can be obtained using Dijkstra algorithm
 - Using the factorized homology embedding Z ensures that each loop corresponds to a single homology class

Classifying any 2-manifold

- $\blacktriangleright \ \mathbb{S}^1 \sharp \mathbb{S}^1 \neq \mathbb{T}^2$ even though $\beta_1 = 2$ for both
- Proposition 4: 1-homology embedding of T^m is an m-dimensional ellipsoid
- Visualize the basis of harmonic vector fields
- Higher-order simplex clustering [Ebli and Spreemann, 2019]
 - Theorem 1 supports their use of subspace clustering algorithm

Shortest homologous loop detection

- Proposition 3: a non-trivial loop corresponding to the ith column of the homology embedding can be obtained using Dijkstra algorithm
- Using the factorized homology embedding Z ensures that each loop corresponds to a single homology class

Synthetic manifolds: two disjoint holes $\mathbb{S}^1 \sharp \mathbb{S}^1$ and tori \mathbb{T}^m

Two disjoint holes $\mathbb{S}^1 \sharp \mathbb{S}^1$:

- Inset: estimated vector field from the corresponding basis with [Chen et al., 2021]
- Red and yellow (z₁ and z₂) are more localized than green and blue

m-tori T^m:

- Homology embedding of T² is different from that of S¹#S¹
 - Classify them by Proposition 4
- **Z** of \mathbb{T}^3 is an ellipsoid

Synthetic manifolds: two disjoint holes $\mathbb{S}^1 \sharp \mathbb{S}^1$ and tori \mathbb{T}^m

2-torus T

3-torus \mathbb{T}^3

Two disjoint holes $\mathbb{S}^1 \sharp \mathbb{S}^1$:

- Inset: estimated vector field from the corresponding basis with [Chen et al., 2021]
- Red and yellow (z₁ and z₂) are more localized than green and blue

y Homology embedding Z Extracted loops from Z

\mathfrak{m} -tori $\mathbb{T}^{\mathfrak{m}}$:

- Homology embedding of T² is different from that of S¹#S¹
 - Classify them by Proposition 4
- **Z** of \mathbb{T}^3 is an ellipsoid

SYNTHETIC MANIFOLDS: COMPLEX SURFACES

SYNTHETIC MANIFOLDS: COMPLEX SURFACES

REAL DATASETS

■ Fig. (j): our framework can be extended to images with cubical complex

REAL DATASETS

■ Fig. (j): our framework can be extended to images with cubical complex

Geometry/shape for the $\ensuremath{\mathcal{H}}_0$ embedding.

- Pivotal for spectral clustering and inference algorithms for the stochastic block models
 - Using matrix perturbation theory [Ng et al., 2002, Wan and Meila, 2015, von Luxburg, 2007]
 - ▶ Under the assumption of a mixture model [Schiebinger et al., 2015]

Higher-order homology embeddings (k > 0).

- Reported empirically that the homology embedding is approximately distributed on the union (directed sum) of subspaces [Ebli and Spreemann, 2019]
 - Subspace clustering algorithms [Kailing et al., 2004] were applied to cluster edges/triangles

CONTRIBUTIONS

- Generalize the study of embedding of the spectral clustering to higher-order homology embedding of H_k
- Our analysis is made possible by expressing the κ-fold connected sum as a matrix perturbation
 - ► Theoretical: the **k**-homology embedding can be approximately factorized into parts, with each corresponding to a prime manifold given a small perturbation
 - ► Algorithmic: identify each decoupled subspace using ICA
 - ▶ Easy to extend to cubical complexes in image analysis
- Applications in shortest homologous loop detection, classifying any 2-dimensional manifold, and visualizing harmonic vector fields.
- Support our theoretical claims by comprehensive experiments on synthetic and real datasets

- 1. Extend our framework to a multiple spatial resolution approach
 - ▶ The persistent spectral methods [Wang et al., 2020, Meng and Xia, 2021]

2. Explore the connection between the proposed framework and the disentangled representations [Zhou et al., 2020]

3. Investigate the success/failure conditions of the proposed spectral homologous loop detection algorithm

¹We thank the anonymous reviewers for suggesting some of these directions to explore.

THANK YOU VERY MUCH!

References

[Armstrong, 2013] Armstrong, M. A. (2013). Basic Topology. Springer Science & Business Media.

[Berry and Sauer, 2019] Berry, T. and Sauer, T. (2019). **Consistent manifold representation for topological data analysis.** *Foundations of Data Science*, 1(1):1.

 [Bokor et al., 2020] Bokor, I., Crowley, D., Friedl, S., Hebestreit, F., Kasprowski, D., Land, M., and Nicholson, J. (2020).
 Connected sum decompositions of high-dimensional manifolds. arXiv:1909.02628 [math].

[Chen et al., 2021] Chen, Y.-C., Meilă, M., and Kevrekidis, I. G. (2021). Helmholtzian Eigenmap: Topological feature discovery & edge flow learning from point cloud data. arXiv:2103.07626 [stat.ML].

[Ebli and Spreemann, 2019] Ebli, S. and Spreemann, G. (2019).
A Notion of Harmonic Clustering in Simplicial Complexes.
2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pages 1083–1090.

[Eckmann, 1944] Eckmann, B. (1944). Harmonische Funktionen und Randwertaufgaben in einem Komplex. Commentarii mathematici Helvetici, 17:240–255.

[Horak and Jost, 2013] Horak, D. and Jost, J. (2013). **Spectra of combinatorial Laplace operators on simplicial complexes.** *Advances in Mathematics*, 244:303–336.

[Kailing et al., 2004] Kailing, K., Kriegel, H.-P., and Kröger, P. (2004).
Density-connected subspace clustering for high-dimensional data.
In Proceedings of the 2004 SIAM International Conference on Data Mining, pages 246–256.
SIAM.

[Lee, 2013] Lee, J. M. (2013). Introduction to Smooth Manifolds.

In Introduction to Smooth Manifolds, pages 1–31. Springer.

[Lim, 2020] Lim, L.-H. (2020). Hodge laplacians on graphs. *Siam Review*, 62(3):685–715.

[Meilă and Shi, 2001] Meilă, M. and Shi, J. (2001).

A random walks view of spectral segmentation.

In International Workshop on Artificial Intelligence and Statistics, pages 203–208. PMLR.

[Meng and Xia, 2021] Meng, Z. and Xia, K. (2021).

Persistent spectral-based machine learning (PerSpect ML) for protein-ligand binding affinity prediction.

Science Advances, 7(19):eabc5329.

[Milnor, 1962] Milnor, J. (1962). A unique decomposition theorem for 3-manifolds. *American Journal of Mathematics*, 84(1):1–7.

[Ng et al., 2002] Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, 2:849–856.

[Schaub et al., 2020] Schaub, M. T., Benson, A. R., Horn, P., Lippner, G., and Jadbabaie, A. (2020).

Random walks on simplicial complexes and the normalized Hodge 1-Laplacian. *SIAM Review*, 62(2):353–391.

[Schiebinger et al., 2015] Schiebinger, G., Wainwright, M. J., and Yu, B. (2015). The geometry of kernelized spectral clustering. Annals of Statistics, 43(2):819–846.

[von Luxburg, 2007] von Luxburg, U. (2007). A Tutorial on Spectral Clustering. *arXiv*:0711.0189 [cs].

[Wan and Meila, 2015] Wan, Y. and Meila, M. (2015). A class of network models recoverable by spectral clustering. In NIPS, pages 3285–3293.

[Wang et al., 2020] Wang, R., Nguyen, D. D., and Wei, G.-W. (2020).
 Persistent spectral graph.
 International journal for numerical methods in biomedical engineering, 36(9):e3376.

[Warner, 2013] Warner, F. W. (2013). Foundations of Differentiable Manifolds and Lie Groups, volume 94. Springer Science & Business Media.

[Yu et al., 2015] Yu, Y., Wang, T., and Samworth, R. J. (2015). A useful variant of the Davis–Kahan theorem for statisticians. *Biometrika*, 102(2):315–323.

[Zhou et al., 2020] Zhou, S., Zelikman, E., Lu, F., Ng, A. Y., Carlsson, G., and Ermon, S. (2020). **Evaluating the disentanglement of deep generative models through manifold topology.** *arXiv preprint arXiv:2006.03680.*

BACKUP SLIDES

BACKUP SLIDES

SIMPLICIAL COMPLEXES, COCHAINS, AND BOUNDARY MATRICES

HIGH-DIMENSIONAL I.I.D. SAMPLES AND NEIGHBORHOOD GRAPH

- Observed data $x_i \in \mathbb{R}^D$ for $i = 1, \cdots, n$ sampled (i.i.d.) from a d-manifold
 - Called a point cloud
- Local low dimensional geometry is encoded in local distances, triangles, tetrahedra, etc.
 - Represented by a neighborhood graph

δ -radius neighborhood graph

G = (V, E) with

- \blacksquare the vertex set V on every \boldsymbol{x}_i 's (index set)
- the edge set E being

$$\mathsf{E} = \{(\mathfrak{i}, \mathfrak{j}) \in \mathsf{V}^2 : \|\mathbf{x}_{\mathfrak{i}} - \mathbf{x}_{\mathfrak{j}}\|_2 \leqslant \delta\}.$$

SIMPLICIAL AND CUBICAL COMPLEXES - I

Simplicial complex $\ensuremath{\mathsf{SC}}$

An **SC** is a set of simplices so that:

- 1. Every face of a simplex from SC is also in SC
- 2. $\sigma_1\cap\sigma_2$ for any $\sigma_1,\sigma_2\in SC$ is a face of both σ_1 and σ_2

\Sigma_{\ell} is the collection of ℓ -simplices σ_{ℓ} , then

$$SC_k = (\Sigma_\ell)_{\ell=0}^k = (\Sigma_0, \Sigma_1, \cdots, \Sigma_k)$$

• The cardinality of Σ_{ℓ} is $n_{\ell} = |\Sigma_{\ell}|$

Remark.

- 1. A graph is: $G = SC_1 = (V, E) = (\Sigma_0, \Sigma_1)$
- 2. We mostly focus on $SC_2 = (V, E, T) = (\Sigma_0, \Sigma_1, \Sigma_2)$

SIMPLICIAL AND CUBICAL COMPLEXES - I

SIMPLICIAL COMPLEX SC

An **SC** is a set of simplices so that:

- 1. Every face of a simplex from SC is also in SC
- 2. $\sigma_1\cap\sigma_2$ for any $\sigma_1,\sigma_2\in\mathsf{SC}$ is a face of both σ_1 and σ_2

\Sigma_{\ell} is the collection of ℓ -simplices σ_{ℓ} , then

$$SC_k = (\Sigma_\ell)_{\ell=0}^k = (\Sigma_0, \Sigma_1, \cdots, \Sigma_k)$$

$$\blacksquare$$
 The cardinality of Σ_ℓ is $n_\ell = |\Sigma_\ell|$

Remark.

1. A graph is: $G = SC_1 = (V, E) = (\Sigma_0, \Sigma_1)$

2. We mostly focus on
$$SC_2=(V,E,T)=(\Sigma_0,\Sigma_1,\Sigma_2)$$

SIMPLICIAL AND CUBICAL COMPLEXES — \parallel

CLIQUE COMPLEX

A clique complex of a graph G = (V, E) is a simplicial complex $SC_k = (\Sigma_0, \cdots, \Sigma_k)$, with the ℓ -th simplex set Σ_ℓ being the set of all ℓ -cliques

Graph **G**

 $\operatorname{\mathsf{NOT}}$ a clique complex of G

A clique complex of ${\rm G}$

Remark. The clique complex built from δ -radius graph := Vietoris-Rips (VR) complex

Cubical complex (*informal*)

A cubical complex $\mathsf{CB}_k=(\mathsf{K}_0,\cdots,\mathsf{K}_k)$ is a collection of sets K_ℓ of $\ell\text{-cubes}$

Remark. CB_k is widely used for image datasets

SIMPLICIAL AND CUBICAL COMPLEXES — \parallel

CLIQUE COMPLEX

A clique complex of a graph G = (V, E) is a simplicial complex $SC_k = (\Sigma_0, \cdots, \Sigma_k)$, with the ℓ -th simplex set Σ_ℓ being the set of all ℓ -cliques

Graph **G**

 $\operatorname{\mathsf{NOT}}$ a clique complex of G

A clique complex of ${\rm G}$

Remark. The clique complex built from δ -radius graph := Vietoris-Rips (VR) complex

CUBICAL COMPLEX (INFORMAL)

A cubical complex $\mathsf{CB}_k = (\mathsf{K}_0, \cdots, \mathsf{K}_k)$ is a collection of sets K_ℓ of $\ell\text{-cubes}$

Remark. CB_k is widely used for image datasets

An SC_2 defines (co-)boundary matrices \mathbf{B}_1 and \mathbf{B}_2

k-cochain

An edge flow (1-cochain) ω_1 is a flow on edges (1-simplex) of SC/CB

•
$$\omega_1 = \sum_i \omega_{1,i} e_i$$
, where $e_i \in E$

Can further denote by $\boldsymbol{\omega}_1 = (\omega_{1,1},\cdots,\omega_{1,n_1})^{ op} \in \mathbb{R}^{n_1}$

- Set of \pm weights on edges
- \blacksquare Space of $\pmb{\omega}$ (:= \mathcal{C}_1) is isomorphic to \mathbb{R}^{n_1}

Example.
$$\omega_1 = 7 \cdot [1, 2] + 2 \cdot [3, 5] + (-1) \cdot [1, 4]$$

$$\boldsymbol{\omega}_1 = \begin{bmatrix} 7 & 0 & -1 & 0 & 0 & 2\\ [1,2] & [1,3] & [1,4] & [2,3] & [3,4] & [3,5] \end{bmatrix} \in \mathbb{R}^6$$

$\omega_{\mathrm{k}}\coloneqq$ Higher-order generalization of ω_{1}

A k-cochain ω_k is a flow on k-simplex of SC/CB

k-cochain

An edge flow (1-cochain) ω_1 is a flow on edges (1-simplex) of SC/CB

•
$$\omega_1 = \sum_i \omega_{1,i} e_i$$
, where $e_i \in E$

Can further denote by $\boldsymbol{\omega}_1=(\omega_{1,1},\cdots,\omega_{1,n_1})^{ op}\in\mathbb{R}^{n_1}$

- Set of \pm weights on edges
- Space of $\boldsymbol{\omega} \mathrel{(\coloneqq \mathcal{C}_1)}$ is isomorphic to \mathbb{R}^{n_1}

Example.
$$\omega_1 = 7 \cdot [1, 2] + 2 \cdot [3, 5] + (-1) \cdot [1, 4]$$

$$\boldsymbol{\omega}_1 = \begin{bmatrix} 7 & 0 & -1 & 0 & 0 & 2 \\ [1,2] & [1,3] & [1,4] & [2,3] & [3,4] & [3,5] \end{bmatrix} \in \mathbb{R}^6$$

$oldsymbol{\omega}_{\mathrm{k}}\coloneqq\mathsf{H}$ igher-order generalization of $oldsymbol{\omega}_{1}$

A k-cochain $\boldsymbol{\omega}_k$ is a flow on k-simplex of SC/CB

k-cochain

An edge flow (1-cochain) ω_1 is a flow on edges (1-simplex) of SC/CB

•
$$\omega_1 = \sum_i \omega_{1,i} e_i$$
, where $e_i \in E$

Can further denote by $\boldsymbol{\omega}_1 = (\omega_{1,1},\cdots,\omega_{1,n_1})^{ op} \in \mathbb{R}^{n_1}$

- Set of \pm weights on edges
- Space of $\boldsymbol{\omega} \mathrel{(\coloneqq \mathcal{C}_1)}$ is isomorphic to \mathbb{R}^{n_1}

Example.
$$\omega_1 = 7 \cdot [1, 2] + 2 \cdot [3, 5] + (-1) \cdot [1, 4]$$

$$\boldsymbol{\omega}_1 = \begin{bmatrix} 7 & 0 & -1 & 0 & 0 & 2 \\ [1,2] & [1,3] & [1,4] & [2,3] & [3,4] & [3,5] \end{bmatrix} \in \mathbb{R}^6$$

$\boldsymbol{\omega}_k\coloneqq \mathsf{Higher}\text{-}\mathsf{Order}\ \overline{\mathsf{generalization}}\ \mathsf{of}\ \boldsymbol{\omega}_1$

A k-cochain $\boldsymbol{\omega}_k$ is a flow on k-simplex of SC/CB

BACKUP SLIDES

The discrete $k\mbox{-}\mbox{Laplacian}$

k-Laplacians

Unnormalized k-Laplacian [Eckmann, 1944]:

Random-walk k-Laplacian [Horak and Jost, 2013]:

Symmetrized k-Laplacian [Schaub et al., 2020]:

$$\begin{split} \mathbf{L}_{k} &= \underbrace{\mathbf{B}_{k}^{\top} \mathbf{B}_{k}}_{\mathbf{L}_{k}^{down}} + \underbrace{\mathbf{B}_{k+1} \mathbf{B}_{k+1}^{\top}}_{\mathbf{L}_{k}^{up}}; \\ \boldsymbol{\mathcal{L}}_{k} &= \underbrace{\mathbf{B}_{k}^{\top} \mathbf{W}_{k-1}^{-1} \mathbf{B}_{k} \mathbf{W}_{k}}_{\mathcal{L}_{k}^{down}} + \underbrace{\mathbf{W}_{1}^{-1} \mathbf{B}_{2} \mathbf{W}_{2} \mathbf{B}_{2}^{\top}}_{\mathcal{L}_{k}^{up}}; \\ \boldsymbol{\mathcal{L}}_{k}^{s} &= \underbrace{\mathbf{A}_{k}^{\top} \mathbf{A}_{k}}_{\mathcal{L}_{k}^{s,down}} + \underbrace{\mathbf{A}_{k+1} \mathbf{A}_{k+1}^{\top}}_{\mathcal{L}_{k}^{s,up}}. \end{split}$$

• $A_{\ell} \coloneqq W_{\ell-1}^{-1/2} B_{\ell} W_{\ell}^{1/2}$ (for $\ell = k, k+1$) is the normalized boundary matrix • $\mathcal{L}_{k}^{s} = W_{k}^{1/2} \mathcal{L}_{k} W_{k}^{-1/2}$ has the same spectrum as \mathcal{L}_{k} [Schaub et al., 2020]

THE UP- AND DOWN-1-LAPLACIAN

• $L_0 = B_1 B_1^{\top}$ is the unnormalized graph Laplacian:

$$L_0 = B_1 B_1^\top = \begin{cases} \mathsf{deg}(\mathfrak{i}) & \text{ if } \mathfrak{i} = \mathfrak{j} \\ -1 & \text{ if } \mathfrak{i} \sim \mathfrak{j} \\ 0 & \text{ otherwise} \end{cases} = \mathbf{D} - \mathbf{A}$$

By letting $W_0 = \operatorname{diag}(|\mathbf{B}_1|W_1\mathbf{1}) = \operatorname{diag}\left(\left[\sum_j w_{ij}\right]_{i=1}^n\right) = \mathbf{D}_{...}$ $\mathcal{L}_0 = W_0^{-1}\mathbf{B}_1W_1\mathbf{B}_1^\top \text{ is the random-walk graph Laplacian:}$ $\mathcal{L}_0 = \mathbf{D}^{-1}\mathbf{B}_1W_1\mathbf{B}_1^\top = \begin{cases} 1 & \text{if } i = j \\ -\frac{1}{\operatorname{deg}(i)} & \text{if } i \neq j \\ 0 & \text{otherwise} \end{cases} = \mathbf{I} - \mathbf{D}^{-1}\mathbf{A}_1$

• $L_0 = B_1 B_1^{\top}$ is the unnormalized graph Laplacian:

$$L_0 = B_1 B_1^\top = \begin{cases} \text{deg}(i) & \text{if } i = j \\ -1 & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases} = D - A$$

By letting
$$W_0 = \text{diag}(|B_1|W_11) = \text{diag}\left(\left[\sum_j w_{ij}\right]_{i=1}^n\right) = \mathbf{D}...$$

• $\mathcal{L}_0 = W_0^{-1}B_1W_1B_1^\top$ is the random-walk graph Laplacian:
 $\mathcal{L}_0 = \mathbf{D}^{-1}B_1W_1B_1^\top = \begin{cases} 1 & \text{if } i = j \\ -\frac{1}{\text{deg}(i)} & \text{if } i \neq j \\ 0 & \text{otherwise} \end{cases} = \mathbf{I} - \mathbf{D}^{-1}\mathbf{A}$

BACKUP SLIDES

HODGE LAPLACIAN, DIFFERENTIAL GEOMETRY, AND TOPOLOGY

HARMONIC VECTOR SPACE

The harmonic vector space $\mathcal{H}_k\subseteq \mathbb{R}^{n_1}$ is a subspace of the k -cochain defined as the null of \mathcal{L}_k

$$\mathcal{H}_{k} \coloneqq \{ \boldsymbol{\omega} \in \mathbb{R}^{n_{k}} : \mathcal{L}_{k} \boldsymbol{\omega} = 0 \}.$$

Remark. Similar definition works for L_k or \mathcal{L}_k^s , as well as its continuous counterpart (using k-differential forms and Δ_k)

- The k-th homology space $H_k \coloneqq ker(B_k)/im(B_{k+1})$
- $\mathfrak{H}_{\mathbf{k}}\cong \mathsf{H}_{\mathbf{k}}$ [Lim, 2020, Warner, 2013]

The k-th Betti number $\beta_k \coloneqq \dim(\mathcal{H}_k) = \dim(\ker(\mathcal{L}_k))$

HARMONIC VECTOR SPACE

The harmonic vector space $\mathcal{H}_k\subseteq \mathbb{R}^{n_1}$ is a subspace of the k -cochain defined as the null of \mathcal{L}_k

$$\mathcal{H}_{k} \coloneqq \{ \boldsymbol{\omega} \in \mathbb{R}^{n_{k}} : \mathcal{L}_{k} \boldsymbol{\omega} = 0 \}.$$

Remark. Similar definition works for L_k or \mathcal{L}_k^s , as well as its continuous counterpart (using k-differential forms and Δ_k)

- \blacksquare The k-th homology space $\mathsf{H}_k \coloneqq \mathsf{ker}(B_k)/\mathsf{im}(B_{k+1})$
- $\mathcal{H}_k \cong \mathcal{H}_k$ [Lim, 2020, Warner, 2013]
- The **k**-th Betti number $\beta_k := \dim(\mathcal{H}_k) = \dim(\ker(\mathcal{L}_k))$

(Finite samples from ${\mathcal M}$)		(Want to approximate)	
Discrete		Continuous	
Simplicial/Cubical complex	SC_ℓ (or CB_ℓ)	Manifold	\mathcal{M}
k -cochain	ω_k	k-form	ζ_k
Boundary matrix	$\mathbf{B}_{\mathbf{k}}$	Codifferential operator	$\delta_{\mathbf{k}}$
Coboundary matrix	$\mathbf{B}_{\mathbf{k}}^{ op}$	Exterior derivative	d_{k-1}
Discrete k -Laplacian	\mathcal{L}_{k}	Laplace-de Rham operator	$\Delta_{\rm k}$
k-homology space	$\mathcal{H}_k \subseteq \mathbb{R}^{n_k}$	k-homology group	$H_k({\mathfrak M},{\mathbb R})$

BACKUP SLIDES

BOUNDARY MATRICES

A boundary matrix B_k ∈ ℝ<sup>n_k×n_{k-1} maps a k-simplex to its (k−1)-th faces
With [x, y, z] ∈ T, B₁ and B₂ are defined as:
</sup>

$$[B_1]_{a,xy} = \begin{cases} 1 & \text{ if } a = x \\ -1 & \text{ if } a = y \\ 0 & \text{ otherwise} \end{cases}; \ [B_2]_{ab,xyz} = \begin{cases} 1 & \text{ if } [a,b] \in \{[x,y],[y,z]\} \\ -1 & \text{ if } [a,b] = [x,z] \\ 0 & \text{ otherwise} \end{cases}$$

 \blacksquare Definition for B_k with $k \geqslant 2$ is in Appendix.

A coboundary matrix ${f B}_k^ op$ (adjoint of ${f B}_k$) maps (k-1)-simplex to its k-th cofaces

Remark. B_k is defined on an SC_ℓ or a CB_ℓ

A boundary matrix B_k ∈ ℝ<sup>n_k×n_{k-1} maps a k-simplex to its (k−1)-th faces
With [x, y, z] ∈ T, B₁ and B₂ are defined as:
</sup>

$$[B_1]_{a,xy} = \begin{cases} 1 & \text{ if } a = x \\ -1 & \text{ if } a = y \\ 0 & \text{ otherwise} \end{cases}; \ [B_2]_{ab,xyz} = \begin{cases} 1 & \text{ if } [a,b] \in \{[x,y],[y,z]\} \\ -1 & \text{ if } [a,b] = [x,z] \\ 0 & \text{ otherwise} \end{cases}$$

 \blacksquare Definition for B_k with $k \geqslant 2$ is in Appendix.

A coboundary matrix $\mathbf{B}_k^ op$ (adjoint of \mathbf{B}_k) maps (k-1)-simplex to its k-th cofaces

Remark. B_k is defined on an SC_ℓ or a CB_ℓ

BACKUP SLIDES

BOUNDARY OPERATORS

DEFINITION S1 (PERMUTATION PARITY)

Given a finite set $\{j_0, j_1, \cdots, j_k\}$ with $k \ge 1$ and $j_\ell < j_m$ if $\ell < m$, the parity of a permutation $\sigma(\{j_0, \cdots, j_k\}) = \{i_0, i_1, \cdots, i_k\}$ is defined to be

$$\varepsilon_{i_0,\cdots,i_k} = -1^{N(\sigma)} \tag{S1}$$

Here $N(\sigma)$ is the *inversion number* of σ . The inversion number is the cardinality of the inversion set, i.e., $N(\sigma) = \#\{(\ell, m) : i_{\ell} > i_m \text{ if } \ell < m\}$. We say σ is an even permutation if $\varepsilon_{i_0, \cdots, i_k} = 1$ and an odd permutation otherwise.

Remark. The Levi-Civita symbol for k = 1 (left) and 2 (right) is

$$\varepsilon_{\mathfrak{i}\mathfrak{j}} = \begin{cases} +1 & \text{if } (\mathfrak{i},\mathfrak{j}) = (1,2) \\ -1 & \text{if } (\mathfrak{i},\mathfrak{j}) = (2,1) \end{cases}; \ \varepsilon_{\mathfrak{i}\mathfrak{j}k} = \begin{cases} +1 & \text{if } (\mathfrak{i},\mathfrak{j},k) \in \{(1,2,3),(2,3,1),(3,1,2)\} \\ -1 & \text{if } (\mathfrak{i},\mathfrak{j},k) \in \{(3,2,1),(1,3,2),(2,1,3)\} \end{cases}$$

DEFINITION S2 (BOUNDARY MAP & BOUNDARY MATRIX)

Let $i_0 \cdots \hat{i_j} \cdots i_k \coloneqq i_0, \cdots, i_{j-1}, i_{j+1}, \cdots, i_k$, and $i_0 \cdots \hat{i_j} \cdots i_k$ denote i_j insert into i_0, \cdots, i_k with proper order, one can define a *boundary map (operator)* $\mathcal{B}_k : \mathcal{C}_k \to \mathcal{C}_{k-1}$ which maps a simplex to its face by

$$\mathcal{B}_{k}([\mathfrak{i}_{0},\cdots,\mathfrak{i}_{k}]) = \sum_{j=0}^{k} (-1)^{j} [\mathfrak{i}_{0}\cdots\hat{\mathfrak{i}_{j}}\cdots\mathfrak{i}_{k}] = \sum_{j=0}^{k} \epsilon_{\mathfrak{i}_{j},\mathfrak{i}_{0}\cdots\hat{\mathfrak{i}_{j}}\cdots\mathfrak{i}_{k}} [\mathfrak{i}_{0}\cdots\hat{\mathfrak{i}_{j}}\cdots\mathfrak{i}_{k}]$$
(S2)

The corresponding boundary matrix $B_k \in \{0, \pm 1\}^{n_{k-1} \times n_k}$ can be defined as follow

$$(\mathbf{B}_{k})_{\sigma_{k-1},\sigma_{k}} \begin{cases} \varepsilon_{i_{j},i_{0}\cdots\hat{i_{j}}\cdots i_{k}} & \text{if } \sigma_{k} = [i_{0},\cdots,i_{k}], \ \sigma_{k-1} = [i_{0}\cdots\hat{i_{j}}\cdots i_{k}] \\ 0 & \text{otherwise.} \end{cases}$$
(S3)

 $(B_k)_{\sigma_{k-1},\sigma_k}$ represents the orientation of σ_{k-1} as a face of σ_k , or equals 0 when the two are not adjacent.

BACKUP SLIDES

ADDITIONAL DEFINITIONS

DEFINITION S3 (NEIGHBORHOOD GRAPHS)

 δ -radius graph:

k-NN graph:

$$\begin{split} \delta\text{-radius graph:} & \mathsf{E} = \{(\mathbf{i}, \mathbf{j}) \in \mathsf{V}^2 : \|\mathbf{x}_{\mathbf{i}} - \mathbf{x}_{\mathbf{j}}\|_2 \leqslant \delta\}; \\ k\text{-NN graph:} & \mathsf{E} = \{(\mathbf{i}, \mathbf{j}) \in \mathsf{V}^2 : \|\mathbf{x}_{\mathbf{i}} - \mathbf{x}_{\mathbf{j}}\|_2 \leqslant \max\left(\rho_k(\mathbf{x}_{\mathbf{i}}), \rho_k(\mathbf{x}_{\mathbf{j}})\right) \\ \delta\text{-CkNN graph [Berry and Sauer, 2019]:} & \mathsf{E} = \left\{(\mathbf{i}, \mathbf{j}) \in \mathsf{V}^2 : \frac{\|\mathbf{x}_{\mathbf{i}} - \mathbf{x}_{\mathbf{j}}\|_2}{\sqrt{\rho_k(\mathbf{x}_{\mathbf{i}})\rho_k(\mathbf{x}_{\mathbf{j}})}} \leqslant \delta\right\}. \end{split}$$

A flow (k-cochain) ω_k on an SC/CB can be described by a linear combination of k-simplices:

- $\blacksquare \ \omega_k = \sum_i \omega_{k,i} \sigma_i^k,$ where $\sigma_i^k \in \Sigma_k$
- Can further denote by $\boldsymbol{\omega}_k = (\omega_{k,1},\cdots,\omega_{k,n_k})^{ op} \in \mathbb{R}^{n_k}$
- Space of $\boldsymbol{\omega}_k$ is \mathcal{C}_k , which is isomorphic to \mathbb{R}^{n_k}

Example. The flow on the toy SC_2 is $\omega_1 = 7 \cdot [1,2] + 2 \cdot [3,5] + (-1) \cdot [1,4]$, or

$$\omega_1 = \begin{bmatrix} 7 & 0 & -1 & 0 & 0 & 2 \\ [1,2] & [1,3] & [1,4] & [2,3] & [3,4] & [3,5] \end{bmatrix} \in \mathbb{R}^6$$

A flow (k-cochain) ω_k on an SC/CB can be described by a linear combination of k-simplices:

- $\blacksquare \ \omega_k = \sum_i \omega_{k,i} \sigma_i^k,$ where $\sigma_i^k \in \Sigma_k$
- Can further denote by $\boldsymbol{\omega}_k = (\omega_{k,1},\cdots,\omega_{k,n_k})^{ op} \in \mathbb{R}^{n_k}$
- Space of $\boldsymbol{\omega}_k$ is \mathcal{C}_k , which is isomorphic to \mathbb{R}^{n_k}

Example. The flow on the toy SC₂ is $\omega_1 = 7 \cdot [1, 2] + 2 \cdot [3, 5] + (-1) \cdot [1, 4]$, or

$$\boldsymbol{\omega}_1 = \begin{bmatrix} 7 & 0 & -1 & 0 & 0 & 2 \\ [1,2] & [1,3] & [1,4] & [2,3] & [3,4] & [3,5] \end{bmatrix} \in \mathbb{R}^6$$

$$\begin{split} \hat{\mathbf{p}}_0 &= \operatorname*{argmin}_{p_0 \in \mathbb{R}^{n_0}} \| \mathbf{W}_1^{1/2} \mathbf{B}_1^\top \mathbf{p}_0 - \boldsymbol{\omega} \|^2; \\ \hat{\mathbf{p}}_2 &= \operatorname*{argmin}_{p_2 \in \mathbb{R}^{n_2}} \| \mathbf{W}_1^{-1/2} \mathbf{B}_2^\top \mathbf{p}_2 - \boldsymbol{\omega} \|^2; \\ \hat{\mathbf{h}} &= \boldsymbol{\omega} - \underbrace{\mathbf{W}_1^{1/2} \mathbf{B}_1^\top \hat{\mathbf{p}}_0}_{\text{gradient}} - \underbrace{\mathbf{W}_1^{-1/2} \mathbf{B}_2 \hat{\mathbf{p}}_2}_{\text{curl}}. \end{split}$$

BACKUP SLIDES

APPROXIMATE 1-COCHAIN & UNDERLYING VECTOR FIELDS

LINEAR INTERPOLATION OF 1-COCHAIN

Let e = [i, j], since $\omega_e = \int_0^1 \zeta(\gamma(t))\gamma'(t)dt$, if given only the vertex-wise vector field $\zeta(x_i) = f(x_i) \in \mathbb{R}^D$, one can approximate the geodesic by $\gamma(t) \approx x_i + (x_j - x_i)t$ and the vector field along γ by $f(\gamma(t)) \approx f(x_i) + (f(x_j) - f(x_i))t$, one has,

$$\boldsymbol{\omega}_{e} = \int_{0}^{1} \mathbf{f}^{\top}(\boldsymbol{\gamma}(t))\boldsymbol{\gamma}'(t)dt \approx \int_{0}^{1} \left[\mathbf{f}(\mathbf{x}_{i}) + (\mathbf{f}(\mathbf{x}_{j}) - \mathbf{f}(\mathbf{x}_{i}))t \right]^{\top} (\mathbf{x}_{j} - \mathbf{x}_{i})dt$$

$$= \frac{1}{2} (\mathbf{f}(\mathbf{x}_{i}) + \mathbf{f}(\mathbf{x}_{j}))^{\top} (\mathbf{x}_{j} - \mathbf{x}_{i})$$
(S4)

Note that (S4) can be written in a more concise form using *boundary operator* \mathbf{B}_1 . Let $\mathbf{F} \in \mathbb{R}^{n \times D}$ with $\mathbf{f}_i = \mathbf{F}_{i,:} = \mathbf{f}(\mathbf{x}_i)$. Since $[|\mathbf{B}_1^\top|\mathbf{F}]_{[i,j]} = \mathbf{f}(\mathbf{x}_i) + \mathbf{f}(\mathbf{x}_j)$, and $[-\mathbf{B}_1^\top \mathbf{X}]_{[i,j]} = \mathbf{x}_j - \mathbf{x}_i$. Therefore,

$$\boldsymbol{\omega} = -\frac{1}{2}\operatorname{diag}(\boldsymbol{B}_1^\top \boldsymbol{X} \boldsymbol{F}^\top | \boldsymbol{B}_1 |)$$

LINEAR INTERPOLATION OF 1-COCHAIN

Let e = [i, j], since $\omega_e = \int_0^1 \zeta(\gamma(t))\gamma'(t)dt$, if given only the vertex-wise vector field $\zeta(x_i) = f(x_i) \in \mathbb{R}^D$, one can approximate the geodesic by $\gamma(t) \approx x_i + (x_j - x_i)t$ and the vector field along γ by $f(\gamma(t)) \approx f(x_i) + (f(x_j) - f(x_i))t$, one has,

$$\boldsymbol{\omega}_{e} = \int_{0}^{1} \mathbf{f}^{\top}(\boldsymbol{\gamma}(t))\boldsymbol{\gamma}'(t)dt \approx \int_{0}^{1} \left[\mathbf{f}(\mathbf{x}_{i}) + (\mathbf{f}(\mathbf{x}_{j}) - \mathbf{f}(\mathbf{x}_{i}))t \right]^{\top} (\mathbf{x}_{j} - \mathbf{x}_{i})dt$$

$$= \frac{1}{2} (\mathbf{f}(\mathbf{x}_{i}) + \mathbf{f}(\mathbf{x}_{j}))^{\top} (\mathbf{x}_{j} - \mathbf{x}_{i})$$
(S4)

Note that (S4) can be written in a more concise form using boundary operator B_1 . Let $F \in \mathbb{R}^{n \times D}$ with $f_i = F_{i,:} = f(x_i)$. Since $[|B_1^\top|F]_{[i,j]} = f(x_i) + f(x_j)$, and $[-B_1^\top X]_{[i,j]} = x_j - x_i$. Therefore,

$$\boldsymbol{\omega} = -\frac{1}{2} \operatorname{diag}(\boldsymbol{B}_1^\top \boldsymbol{X} \boldsymbol{F}^\top | \boldsymbol{B}_1 |)$$

OBTAINING VERTEX-WISE VECTOR FIELD FROM 1-COCHAIN

Let $X_E = -B_1^T X$ (so $[X_E]_{[i,j]} = x_j - x_i$) and define χ_E such that $[\chi_E]_{[i,j]} = ||x_j - x_i||_2^2$. Given the 1-cochain ω , one can solve the following D least square problems to estimate the vector field F on each point x_i .

$$\hat{\boldsymbol{\nu}}_{\ell} = \underset{\boldsymbol{\nu}_{\ell} \in \mathbb{R}^{n}}{\operatorname{argmin}} \left\{ \left\| |\boldsymbol{B}_{1}^{\top}|\boldsymbol{\nu}_{\ell} - ([\boldsymbol{X}_{\mathsf{E}}]_{:,\ell} \oslash \boldsymbol{\chi}_{\mathsf{E}}) \circ \boldsymbol{\omega} \right\|_{2}^{2} \right\} \, \forall \, \ell = 1, \cdots, \mathsf{D}$$
(S5)

∘, \oslash is *Hadamard product* and *division*, respectively. The solution to the *ℓ*-th least square problem corresponds to estimate $f_{\ell}(x_i)$ from $\frac{1}{2}(f_{\ell}(x_i) + f_{\ell}(x_j))$. I.e., (inner product)

$$\frac{1}{2}(f_{\ell}^{\|}(x_{i}) + f_{\ell}^{\|}(x_{j})) = [([X_{E}]_{:,\ell} \oslash \chi_{E}) \circ \omega]_{[i,j]} = \frac{(x_{j,\ell} - x_{i,\ell})\omega_{ij}}{\|x_{j} - x_{i}\|^{2}}$$

The estimated vector field $\hat{\mathsf{F}}$ is

$$\hat{\mathsf{F}} = \left[\begin{array}{ccc} \dot{\boldsymbol{\nu}}_1 & \dot{\boldsymbol{\nu}}_2 & \dots & \dot{\boldsymbol{\nu}}_D \\ | & | & | & | \end{array} \right] \in \mathbb{R}^{n \times D}$$

OBTAINING VERTEX-WISE VECTOR FIELD FROM 1-COCHAIN

Let $X_E = -B_1^T X$ (so $[X_E]_{[i,j]} = x_j - x_i$) and define χ_E such that $[\chi_E]_{[i,j]} = ||x_j - x_i||_2^2$. Given the 1-cochain ω , one can solve the following D least square problems to estimate the vector field F on each point x_i .

$$\hat{\boldsymbol{\nu}}_{\ell} = \underset{\boldsymbol{\nu}_{\ell} \in \mathbb{R}^{n}}{\operatorname{argmin}} \left\{ \left\| |\boldsymbol{B}_{1}^{\top}|\boldsymbol{\nu}_{\ell} - ([\boldsymbol{X}_{E}]_{:,\ell} \oslash \boldsymbol{\chi}_{E}) \circ \boldsymbol{\omega} \right\|_{2}^{2} \right\} \forall \ell = 1, \cdots, D$$
(S5)

o, ⊘ is Hadamard product and division, respectively. The solution to the ℓ -th least square problem corresponds to estimate $f_{\ell}(x_i)$ from $\frac{1}{2}(f_{\ell}(x_i) + f_{\ell}(x_j))$. I.e., (inner product)

$$\frac{1}{2}(f_{\ell}^{\parallel}(\mathbf{x}_{i})+f_{\ell}^{\parallel}(\mathbf{x}_{j}))=[([\mathbf{X}_{E}]_{:,\ell}\otimes \boldsymbol{\chi}_{E})\circ\boldsymbol{\omega}]_{[i,j]}=\frac{(x_{j,\ell}-x_{i,\ell})\boldsymbol{\omega}_{ij}}{\|\mathbf{x}_{j}-\mathbf{x}_{i}\|^{2}}$$

The estimated vector field $\hat{\mathsf{F}}$ is

$$\hat{\mathsf{F}} = \left[\begin{array}{ccc} | & | & | \\ \hat{\mathsf{v}}_1 & \hat{\mathsf{v}}_2 & \dots & \hat{\mathsf{v}}_D \\ | & | & | \end{array} \right] \in \mathbb{R}^{n \times I}$$

OBTAINING VERTEX-WISE VECTOR FIELD FROM 1-COCHAIN

Let $X_E = -B_1^T X$ (so $[X_E]_{[i,j]} = x_j - x_i$) and define χ_E such that $[\chi_E]_{[i,j]} = ||x_j - x_i||_2^2$. Given the 1-cochain ω , one can solve the following D least square problems to estimate the vector field F on each point x_i .

$$\hat{\boldsymbol{\nu}}_{\ell} = \underset{\boldsymbol{\nu}_{\ell} \in \mathbb{R}^{n}}{\operatorname{argmin}} \left\{ \left\| |\boldsymbol{B}_{1}^{\top}|\boldsymbol{\nu}_{\ell} - ([\boldsymbol{X}_{E}]_{:,\ell} \oslash \boldsymbol{\chi}_{E}) \circ \boldsymbol{\omega} \right\|_{2}^{2} \right\} \forall \ell = 1, \cdots, D$$
(S5)

o, ⊘ is Hadamard product and division, respectively. The solution to the ℓ -th least square problem corresponds to estimate $f_{\ell}(x_i)$ from $\frac{1}{2}(f_{\ell}(x_i) + f_{\ell}(x_j))$. I.e., (inner product)

$$\frac{1}{2}(f_{\ell}^{\parallel}(\boldsymbol{x}_{i})+f_{\ell}^{\parallel}(\boldsymbol{x}_{j}))=[([\boldsymbol{X}_{E}]_{:,\ell}\otimes\boldsymbol{\chi}_{E})\circ\boldsymbol{\omega}]_{[i,j]}=\frac{(\boldsymbol{x}_{j,\ell}-\boldsymbol{x}_{i,\ell})\boldsymbol{\omega}_{ij}}{\|\boldsymbol{x}_{j}-\boldsymbol{x}_{i}\|^{2}}$$

The estimated vector field \hat{F} is

$$\hat{\mathsf{F}} = \left[\begin{array}{ccc} | & | & | \\ \hat{\mathsf{v}}_1 & \hat{\mathsf{v}}_2 & \dots & \hat{\mathsf{v}}_D \\ | & | & | \end{array} \right] \in \mathbb{R}^{n \times D}$$

BACKUP SLIDES

APPLICATIONS

HOMOLOGOUS LOOP DETECTION—THEORY

Proposition S4 (Induced digraph from z_i)

Let z_i for $i = 1, \dots, \beta_1$ be the *i*-th homology basis that corresponds to the *i*-th homology class and G_i be the induced digraph of the flow z_i . Then for every $i = 1, \dots, \beta_1$,

- 1. there exist at least one cycle in the digraph G_i such that every vertex $v \in V$ can traverse back to itself (reachable);
- 2. the corresponding cycle will enclose at least one homology class (no short-circuiting).

Sketch of proof.

- **Reachable**: harmonic flow is *divergence-free*
- no short-circuiting: from Stoke's theorem and Poincaré Lemma [Lee, 2013]

Example.

Spectral homologous loop detection from \boldsymbol{Z}

Spectral homologous loop detection from \boldsymbol{Z}

Input: $\mathbf{Z} = [\mathbf{z}_1, \cdots, \mathbf{z}_{\beta_1}], \mathbf{V}, \mathbf{E}, \text{ edge distance } \mathbf{d}$

for
$$i = 1, \cdots, \beta_1$$
 do

$$\mathsf{E}_{i}^{+} \leftarrow \{(\mathsf{s},\mathsf{t}):(\mathsf{s},\mathsf{t}) \in \mathsf{E} \text{ and } [z_{i}]_{(\mathsf{s},\mathsf{t})} > \mathsf{0}\}$$

$$\mathsf{E} \mid \mathsf{E}_{\mathsf{i}}^{-} \leftarrow \{(\mathsf{t},\mathsf{s}): (\mathsf{s},\mathsf{t}) \in \mathsf{E} \text{ and } [z_{\mathsf{i}}]_{(\mathsf{s},\mathsf{t})} < \mathsf{0}\}$$

4
$$\tau \leftarrow \text{Percentile}(|\boldsymbol{z}_i|, 1 - 1/\beta_1)$$

$$= \mathsf{E}_{i}^{\times} \leftarrow \{ e \in \mathsf{E}_{i}^{+} \cup \mathsf{E}_{i}^{-} : |[\boldsymbol{z}_{i}]_{e}| < \tau \}$$

$$\mathsf{E}_{i} \leftarrow \mathsf{E}_{i}^{+} \cup \mathsf{E}_{i}^{-} \setminus \mathsf{E}_{i}^{\times}$$

$$G_i \leftarrow (V, E_i)$$
, with weight of $e \in E_i$ being $[d]$

$$d_{\min} = \inf$$

10 11

12

for
$$e = (t, s_0) \in E_i$$
 de

$$\mathcal{P}^* (\coloneqq [s_0, s_1, \cdots, t]), d^* \leftarrow \mathsf{Dijkstra}(G_i, \texttt{from}=s_0, \texttt{to}=s_0, \texttt{to}=s_0,$$

if
$$d^* < d_{min}$$
 then

$$\mathbb{C}_{i} \leftarrow [\mathsf{t}, \mathsf{s}_{0}, \mathsf{s}_{1}, \cdots, \mathsf{t}]$$

Return: $\mathcal{C}_1, \cdots, \mathcal{C}_{\beta_1}$

Thresholding z_i :

Each homology class has $\approx n_1/\beta_1$ edges

Spectral homologous loop detection from \boldsymbol{Z}

Algorithm S1: SpectralLoopFind

Input: $Z = [z_1, \cdots, z_{\beta_1}], V, E$, edge distance d

for $i = 1, \cdots, \beta_1$ do

$$\mathbf{E} \quad \left[\begin{array}{c} \mathsf{E}_{i}^{+} \leftarrow \{(\mathsf{s},\mathsf{t}): (\mathsf{s},\mathsf{t}) \in \mathsf{E} \text{ and } [z_{i}]_{(\mathsf{s},\mathsf{t})} > 0 \} \right]$$

$$\mathsf{E}_{\mathsf{i}}^{-} \leftarrow \{(\mathsf{t},\mathsf{s}): (\mathsf{s},\mathsf{t}) \in \mathsf{E} \text{ and } [z_{\mathsf{i}}]_{(\mathsf{s},\mathsf{t})} < \mathsf{0}\}$$

4
$$\tau \leftarrow \text{Percentile}(|z_i|, 1 - 1/\beta_1)$$

$$\mathsf{E}_{\mathsf{i}}^{\times} \leftarrow \{ e \in \mathsf{E}_{\mathsf{i}}^{+} \cup \mathsf{E}_{\mathsf{i}}^{-} : |[z_{\mathsf{i}}]_{e}| < \tau \}$$

$$\mathbf{E}_{i} \leftarrow \mathbf{E}_{i}^{+} \cup \mathbf{E}_{i}^{-} \setminus \mathbf{E}_{i}^{\times}$$

$$G_i \leftarrow (V, E_i)$$
, with weight of $e \in E_i$ being $[d]_e$

$$d_{\min} = \inf$$

8

10

11

12

for
$$e = (t, s_0) \in E_i$$
 do

$$\mathcal{P}^* (\coloneqq [s_0, s_1, \cdots, t]), d^* \leftarrow \mathsf{Dijkstra}(\mathsf{G}_i, \texttt{from}=s_0, \texttt{to}=t)$$

if
$$d^* < d_{min}$$
 then

$$c_i \leftarrow [t, s_0, s_1, \cdots, t]$$

Return: $\mathcal{C}_1, \cdots, \mathcal{C}_{\beta_1}$

Shortest "loop" with Dijkstra:

- Dijkstra will find a loop for every $v \in V$ (reachable)
- Every loop obtained is valid (no short-circuiting)

CLASSIFYING ANY 2-DIMENSIONAL MANIFOLD

- $\beta_1(\text{torus}) = \beta_1(\text{two disjoint holes}) = 2$
 - Not possible to distinguish these two manifolds *only* by rank information
 - From Theorem 1, the embedding of S¹#S¹ can be (roughly) factorized into two "lines"
 - Any loop in T² is a convex combination of the two homology classes
 - Intrinsic dimension = 2

Remark. Can categorize the manifold ${\mathfrak M}$ from ${\boldsymbol Z}$

 With the classification theorem of surfaces [Armstrong, 2013]

Proposition S5 (Shape of the embedding Z of a flat m -torus $\mathbb{T}^m)$

The envelope of the first homology embedding (1-cochain) induced by the harmonic 1-form on the flat m-torus \mathbb{T}^m is an m-dimensional ellipsoid.

Visualize the basis of harmonic vector fields:

Higher-order simplex clustering [Ebli and Spreemann, 2019]:

■ Theorem 1 supports the use of subspace clustering algorithm in this framework

BACKUP SLIDES

ASSUMPTIONS AND THEOREMS

Notations

	$(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$() \qquad \qquad$
	Disjoint manifold $\mathcal{M}_{\mathfrak{i}}$	Connected manifold ${\mathfrak M}$
Simplicial complex	$\hat{SC}_k^{(\mathfrak{i})} = (\hat{\Sigma}_0^{(\mathfrak{i})}, \cdots, \hat{\Sigma}_k^{(\mathfrak{i})})$	$SC_k = (\Sigma_0, \cdots, \Sigma_k)$
k-Laplacian Homology space k-th Betti number Homology embedding	$\hat{\mathcal{L}}_{k}^{(ii)} \ \mathcal{H}_{k}(\mathcal{M}_{i}) \ eta_{k}(\mathcal{M}_{i}) \ \hat{\mathbf{Y}}$	$egin{array}{llllllllllllllllllllllllllllllllllll$

Remark.

Notation with ^Î := disjoint manifolds
 SĈ = ∪_{i=1}^κ SĈ⁽ⁱ⁾ ≠ SC

ASSUMPTION 1

1. $\mathfrak{H}_k(SC)$ (discrete) is isomorphic to the homology group $H_k(\mathfrak{M},\mathbb{R})$ (continuous)

2. Assume that $\mathfrak{M} = \mathfrak{M}_1 \sharp \cdots \sharp \mathfrak{M}_{\kappa}$ and the isomorphic condition holds for every \mathfrak{M}_i , i.e.,

$$\mathfrak{H}_k(\hat{SC}^{(\mathfrak{i})})\cong\mathfrak{H}_k(\mathfrak{M}_\mathfrak{i})$$
 for $\mathfrak{i}=1,\cdots$, $\kappa.$

Remark.

- 1. Any procedure for constructing SC or weight function for \mathcal{L}_k is acceptable
- 2. Manifold ${\mathcal M}$ can be decomposed
 - ▶ Mostly true except for the known hard case of 4-manifolds

ASSUMPTION 2

Denote the set of destroyed and created k-simplexes during connected sum by \mathfrak{D}_k and \mathfrak{C}_k ; $\mathfrak{N}_k = \Sigma_k \setminus \mathfrak{C}_k = \hat{\Sigma}_k \setminus \mathfrak{D}_k$ is the set of non-intersecting simplexes. Then

1. no \mathbf{k} -homology class is created during the connected sum process, i.e.,

$$\beta_k(SC) = \sum_{i=1}^{\kappa} \beta_k(\hat{SC}^{(i)});$$
 and

2. The minimum eigenvalues of $\mathcal{L}_{k}^{\mathfrak{C},\mathfrak{C}}$ and $\hat{\mathcal{L}}_{k}^{\mathfrak{D},\mathfrak{D}}$ are bounded away from the eigengaps δ_{i} of $\mathcal{L}_{k}^{(ii)}$, i.e., $\min\{\lambda_{\min}(\mathcal{L}_{k}^{\mathfrak{C},\mathfrak{C}}), \lambda_{\min}(\hat{\mathcal{L}}_{k}^{\mathfrak{D},\mathfrak{D}})\} \gg \min\{\delta_{1}, \cdots, \delta_{\kappa}\}$.

Remark.

- 1. If $\dim(\mathcal{M}) > k$, then $\mathcal{H}_k(\mathcal{M}_1 \sharp \mathcal{M}_2) \cong \mathcal{H}_k(\mathcal{M}_1) \oplus \mathcal{H}_k(\mathcal{M}_2)$ [Lee, 2013]
- 2. E.g., it happens when \mathfrak{C}_k and \mathfrak{D}_k are cliques contained in small balls

Small perturbations in the $\left(k+1\right)\text{-simplex}$ set

ASSUMPTION 3 (INFORMAL, SEE ALSO ASSUMPTION 6.4 IN THE THESIS)

Let $\tilde{w}_k = |B_{k+1}[\mathfrak{N}_k, \mathfrak{N}_{k+1}]|w_{k+1}, \tilde{w}_{k-1} = |B_k[:, \mathfrak{N}_k]|\tilde{w}_k$. For $\ell = k$ or k-1, we have

$ \mathfrak{C}_{\mathbf{k}} $ is small:	$\max_{\sigma\in\mathfrak{N}_\ell} \left\{ w_\ell(\sigma)/\tilde{w}_\ell(\sigma) - 1 \right\} \leqslant \varepsilon_\ell;$
$ \mathfrak{D}_{\mathbf{k}} $ is small:	$\max_{\sigma\in\mathfrak{N}_\ell}\left\{\hat{w}_\ell(\sigma)/\tilde{w}_\ell(\sigma)-1\right\}\leqslant\varepsilon_\ell\text{; and}$
The net effect is small:	$\max_{\sigma\in\mathfrak{N}_{\ell}}\left\{ w_{\ell}(\sigma)/\hat{w}_{\ell}(\sigma)-1 \right\}\leqslant\varepsilon_{\ell}'.$

- 1. Not too many triangles are created/destroyed during connected sum
- 2. Sparsely connected manifold
 - Density in the connected sum region should be smaller than other regions
- 3. Empirically, the perturbation is small even when ${\mathfrak M}$ is not sparsely connect

SUBSPACE PERTURBATION: SKETCH OF PROOF OF THEOREM 1

Sketch of proof. The proof (in Supplement) is based on

- 1. Bound the error (DiffL^{up}_k and DiffL^{down}_k terms) between \mathcal{L}_k and $\hat{\mathcal{L}}_k$ with $\tilde{\mathcal{L}}_k$;
 - $\tilde{\mathcal{L}}_k \coloneqq$ the Laplacian after removing the k-simplices in both \mathfrak{C}_k and \mathfrak{D}_k during connected sum
- 2. Use of a variant of the Davis-Kahan theorem [Yu et al., 2015] (the spectral norm $\|\cdot\|$); and
- 3. Bound the spectral norm of \mathcal{L}_k for a simplicial complex [Horak and Jost, 2013]

$$\|\mathcal{L}_k\|_2 \leqslant k+2.$$

• Any (k+1)-simplex has (k+2) faces

PROPOSITION S6

Given an up k-Laplacian $\mathcal{L}_{k}^{up} = \mathbf{A}_{k+1}\mathbf{A}_{k+1}^{\top}$ with $\mathbf{A}_{k+1} = \mathbf{W}_{k}^{-1/2}\mathbf{B}_{k+1}\mathbf{W}_{k+1}^{1/2}$ built from a cubical complex, we have

 $\|\mathcal{L}_k^{\mathsf{up}}\|_2 \leqslant \lambda_k = 2k+2.$

Sketch of proof. The (2k + 2) term comes from the fact that a (k + 1)-cube has (2k + 2) faces. The rest of the proof follows from [Horak and Jost, 2013].

Corollary S7 (\mathcal{L}_k built from a cubical complex)

Under Assumptions 2–3 with DiffL^{up}_k as well as DiffL^{down}_k defined in Theorem 1 and $\lambda_k = 2k + 2$, there exists a unitary matrix **O** such that (1) holds.

