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MOTIVATION

Embedding of spectral clustering
Structure of the embedding is known:

▶ Orthogonal cone structure (OCS) [Schiebinger et al., 2015]

Clusters (red/blue) can be idenঞfied from the embedding
Spectral clustering := 0-homology embedding

What about the higher-order cases?
Empirical observaঞon [Ebli and Spreemann, 2019]

▶ Embedding is a “union” of subspaces

Localize the “subcomponents” of a manifold

1st
coordinate 2nd

coordinate 3rd
coordinate 4th

coordinate

Main contribuঞon
A theoreঞcal analysis of the above observaঞon

▶ Using the concepts of connected sum and matrix perturbaঞon theory

Data-driven decomposiঞon algorithm + idenঞfying loops (side product)
2 22



MOTIVATION

Embedding of spectral clustering
Structure of the embedding is known:

▶ Orthogonal cone structure (OCS) [Schiebinger et al., 2015]

Clusters (red/blue) can be idenঞfied from the embedding
Spectral clustering := 0-homology embedding

What about the higher-order cases?
Empirical observaঞon [Ebli and Spreemann, 2019]

▶ Embedding is a “union” of subspaces

Localize the “subcomponents” of a manifold

1st
coordinate 2nd

coordinate 3rd
coordinate 4th

coordinate

Main contribuঞon
A theoreঞcal analysis of the above observaঞon

▶ Using the concepts of connected sum and matrix perturbaঞon theory

Data-driven decomposiঞon algorithm + idenঞfying loops (side product)
2 22



MOTIVATION

Embedding of spectral clustering
Structure of the embedding is known:

▶ Orthogonal cone structure (OCS) [Schiebinger et al., 2015]

Clusters (red/blue) can be idenঞfied from the embedding
Spectral clustering := 0-homology embedding

What about the higher-order cases?
Empirical observaঞon [Ebli and Spreemann, 2019]

▶ Embedding is a “union” of subspaces

Localize the “subcomponents” of a manifold

1st
coordinate 2nd

coordinate 3rd
coordinate 4th

coordinate

Main contribuঞon
A theoreঞcal analysis of the above observaঞon

▶ Using the concepts of connected sum and matrix perturbaঞon theory

Data-driven decomposiঞon algorithm + idenঞfying loops (side product)
2 22



INTRODUCTION



DISCRETE k-HODGE LAPLACIAN AND MANIFOLD GEOMETRY

(Finite samples from M) (Want to approximate)

Discrete Conঞnuous

Simplicial complex SCℓ Manifold M

k-cochain ωk k-form ζk
Boundary matrix Bk Codifferenঞal operator δk
Coboundary matrix B⊤

k Exterior derivaঞve dk−1
Discrete k-Laplacian Lk Laplace-de Rham operator ∆k

k-homology space Hk ⊆ Rnk k-homology group Hk(M, R)

Simplicial complex
▶ SCℓ = (Σ0,Σ1, · · · ,Σℓ) = (V,E, T , · · · ,Σℓ)
▶ nk := |Σk|

Clique complex of G
▶ fill all triangles, tetrahedrons, ..., (all k-cliques) in G

1

2

3

4

5

6
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DISCRETE k-HODGE LAPLACIAN AND MANIFOLD GEOMETRY

(Finite samples from M) (Want to approximate)

Discrete Conঞnuous

Simplicial complex SCℓ Manifold M

k-cochain ωk k-form ζk
Boundary matrix Bk Codifferenঞal operator δk
Coboundary matrix B⊤

k Exterior derivaঞve dk−1
Discrete k-Laplacian Lk Laplace-de Rham operator ∆k

k-homology space Hk ⊆ Rnk k-homology group Hk(M, R)

SYMMETRIZED k-LAPLACIANS
[HORAK AND JOST, 2013]

Lk = A⊤
kAk︸ ︷︷ ︸

Ldown
k

+Ak+1A
⊤
k+1︸ ︷︷ ︸

L
up
k

.

Aℓ := W
−1/2
ℓ−1BℓW

1/2
ℓ

▶ Normalized boundary matrix

L0 = A1A
⊤
1 = I−D

−1/2KD
−1/2

▶ Symmetrized graph Laplacian

Lk ∈ Rnk×nk
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DISCRETE k-HODGE LAPLACIAN AND MANIFOLD GEOMETRY

(Finite samples from M) (Want to approximate)

Discrete Conঞnuous

Simplicial complex SCℓ Manifold M

k-cochain ωk k-form ζk
Boundary matrix Bk Codifferenঞal operator δk
Coboundary matrix B⊤

k Exterior derivaঞve dk−1
Discrete k-Laplacian Lk Laplace-de Rham operator ∆k

k-homology space Hk ⊆ Rnk k-homology group Hk(M, R)

k-homology space: Hk := ker(Lk)
[Lim, 2020, Warner, 2013]
kth Beম number βk := dim(Hk)

k-homology embedding Y ∈ Rnk×βk is the basis of Hk

Can esঞmate a basis of vector fields from Y for k = 1
[Chen et al., 2021]
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CONNECTED SUM AND MANIFOLD (PRIME) DECOMPOSITION

The connected sum [Lee, 2013] M = M1♯M2:
1. removing two d-dimensional “disks” from M1 and

M2 (shaded area)
2. gluing together two manifolds at the boundaries

Existence of prime decomposiঞon: factorize a manifold M = M1♯ · · · ♯Mκ into Mi’s so
that Mi is a prime manifold

d = 2: classificaঞon theorem of surfaces [Armstrong, 2013]
d = 3: the uniqueness of the prime decomposiঞon was shown by Kneser-Milnor
theorem [Milnor, 1962]
d ⩾ 5: [Bokor et al., 2020] proved the existence of factorizaঞon (but they might
not be unique)
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PROBLEM FORMULATION



NOTATIONS
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THEORETIC AND ALGORITHMIC AIM

Theoreঞc aim
Study the geometric properঞes of Y

▶ Recovering the homology basis of each prime manifold Mi
▶ Recover Ŷ (localized, support on each Mi) from Y (coupled,

rotaঞon of Ŷ )

Provide an analogous theorem to the OCS
[Meilă and Shi, 2001, Ng et al., 2002, Schiebinger et al., 2015] in
spectral clustering (H0)

Algorithmic aim
The null space basis of Lk is only
idenঞfiable up to a unitary matrix

▶ Y is less interpretable than Z!!

Proposed a data-driven approach to
obtain Z from Y

▶ Approximate Ŷ with Z

1st
coordinate

Y

2nd
coordinate 3rd

coordinate 4th
coordinate

Z
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CONNECTED SUM AS A MATRIX PERTURBA-
TION



ASSUMPTIONS

1. Points are sampled from a decomposable manifold
▶ κ-fold connected sum: M = M1♯ · · · ♯Mκ
▶ Hk(SC) (discrete) and Hk(M, R) (conঞnuous) are

isomorphic. Also for every Mi

Works for any consistent method to build Lk

We use our prior work [Chen et al., 2021] for L1

2. No k-homology class is created/destroyed during the connected sum
▶ If dim(M) > k, then Hk(M1♯M2) ∼= Hk(M1)⊕Hk(M2) [Lee, 2013]
▶ [Technical] The eigengap of Lk is the min of each L̂

(ii)
k : δ = min{δ1, · · · , δκ}

3. Sparsely connected manifold
▶ Not too many triangles are created/destroyed during connected sum (for k = 1)
▶ Empirically, the perturbaঞon is small even when M is not sparsely connected
▶ [Technical] Perturbaࢼons of ℓ-simplex set Σℓ are small (ϵℓ and ϵ ′

ℓ are small)
for ℓ = k,k− 1
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SUBSPACE PERTURBATION

THEOREM 1

Under Assumpࢼons 1–3, there exists a unitary matrix O ∈ Rβk×βk such that

∥∥∥YNk,: − ŶNk,:O
∥∥∥2

F
⩽

8βk

[∥∥DiffLdown
k

∥∥2
+
∥∥DiffLup

k

∥∥2
]

min{δ1, · · · , δκ}
, (1)

with ∥∥∥DiffLdown
k

∥∥∥2
⩽

[
2
√
ϵ ′
k + ϵ ′

k +
(

1+
√
ϵ ′
k

)2 √
ϵ ′
k−1 + 4√ϵk−1

]2
(k+ 1)2; and

∥∥DiffLup
k

∥∥2 ⩽
[
2
√

ϵ ′
k + ϵ ′

k + 2ϵk + 4√ϵk
]2

(k+ 2)2.

Assu. 2: no topology is destroyed/created
Assu. 3: sparsely connected
Nk: bound only simplexes that are not altered during connected sum
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DECOMPOSITION ALGORITHM IN THE HARMONIC EMBEDDING Y
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Input: Y (coupled)
Output: Z (localized, approx. of Ŷ )
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coordinate
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2nd
coordinate 3rd

coordinate 4th
coordinate

Z

∥∥∥YNk,: − ŶNk,:O
∥∥∥2

F
⩽ 8βk · (· · · )

min{δ1, · · · , δκ}

Esঞmate O with Independent Com-
ponent Analysis (ICA)
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APPLICATIONS

Classifying any 2-manifold
▶ S1♯S1 ̸= T2 even though β1 = 2 for both
▶ Proposiঞon 4: 1-homology embedding of

Tm is an m-dimensional ellipsoid

Visualize the basis of harmonic vector fields
Higher-order simplex clustering
[Ebli and Spreemann, 2019]

▶ Theorem 1 supports their use of subspace
clustering algorithm

Two disjoint holes: S1]S1 Torus: T2

Shortest homologous loop detecঞon
▶ Proposiঞon 3: a non-trivial loop corresponding to the

ith column of the homology embedding can be
obtained using Dijkstra algorithm

▶ Using the factorized homology embedding Z ensures
that each loop corresponds to a single homology class
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SYNTHETIC MANIFOLDS: TWO DISJOINT HOLES S1♯S1 AND TORI Tm

Two disjoint holes S1♯S1:
Inset: esঞmated vector field from the
corresponding basis with [Chen et al., 2021]
Red and yellow (z1 and z2) are more localized
than green and blue

m-tori Tm:
Homology embedding of T2 is
different from that of S1♯S1

▶ Classify them by Proposiঞon 4

Z of T3 is an ellipsoid
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SYNTHETIC MANIFOLDS: COMPLEX SURFACES
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12 22



SYNTHETIC MANIFOLDS: COMPLEX SURFACES

−0.05 0.00 0.05
1st

0

2000

4000

6000

8000

10000

12000

1s
t

−0.05 0.00 0.05
2nd

−0.05 0.00 0.05
3rd

−0.05 0.00 0.05
4th

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

1s
t

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

2n
d

0

2000

4000

6000

8000

10000

12000

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

2n
d

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

3r
d

0

2000

4000

6000

8000

10000

12000

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

3r
d

−0.05 0.00 0.05
1st

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

4t
h

−0.05 0.00 0.05
2nd

−0.05 0.00 0.05
3rd

−0.05 0.00 0.05
4th

0 0

2000 2000

4000 4000

6000 6000

8000 8000

10000 10000

12000 12000

4t
h

Indep. harmonic embedding z Harmonic embedding y

Genus-2 surface:

Concatenaঞon of 4 tori:

12 22



REAL DATASETS
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Fig. (j): our framework can be extended to images with cubical complex
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DISCUSSION



PRIOR WORK

Geometry/shape for theH0 embedding.
Pivotal for spectral clustering and inference algorithms for the stochasঞc block
models

▶ Using matrix perturbaঞon theory
[Ng et al., 2002, Wan and Meila, 2015, von Luxburg, 2007]

▶ Under the assumpঞon of a mixture model [Schiebinger et al., 2015]

Higher-order homology embeddings (k > 0).
Reported empirically that the homology embedding is approximately distributed on
the union (directed sum) of subspaces [Ebli and Spreemann, 2019]

▶ Subspace clustering algorithms [Kailing et al., 2004] were applied to cluster
edges/triangles

14 22



CONTRIBUTIONS

Generalize the study of embedding of the spectral clustering to higher-order
homology embedding of Hk

Our analysis is made possible by expressing the κ-fold connected sum as a matrix
perturbaঞon

▶ Theoreঞcal: the k-homology embedding can be approximately factorized into parts,
with each corresponding to a prime manifold given a small perturbaঞon

▶ Algorithmic: idenঞfy each decoupled subspace using ICA
▶ Easy to extend to cubical complexes in image analysis

Applicaঞons in shortest homologous loop detecঞon, classifying any 2-dimensional
manifold, and visualizing harmonic vector fields.
Support our theoreঞcal claims by comprehensive experiments on syntheঞc and real
datasets
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FUTURE WORK1

1. Extend our framework to a mulঞple spaঞal resoluঞon approach
▶ The persistent spectral methods [Wang et al., 2020, Meng and Xia, 2021]

2. Explore the connecঞon between the proposed framework and the disentangled
representaঞons [Zhou et al., 2020]

3. Invesঞgate the success/failure condiঞons of the proposed spectral homologous
loop detecঞon algorithm

1We thank the anonymous reviewers for suggesঞng some of these direcঞons to explore.
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BACKUP SLIDES

SIMPLICIAL COMPLEXES, COCHAINS, AND BOUNDARY MATRICES



HIGH-DIMENSIONAL I.I.D. SAMPLES AND NEIGHBORHOOD GRAPH

Observed data xi ∈ RD for i = 1, · · · ,n sampled
(i.i.d.) from a d-manifold

▶ Called a point cloud

Local low dimensional geometry is encoded in local
distances, triangles, tetrahedra, etc.

▶ Represented by a neighborhood graph

δ-RADIUS NEIGHBORHOOD GRAPH

G = (V,E) with
the vertex set V on every xi’s (index set)
the edge set E being

E = {(i, j) ∈ V2 : ∥xi − xj∥2 ⩽ δ}.



SIMPLICIAL AND CUBICAL COMPLEXES — I

SIMPLICIAL COMPLEX SC
An SC is a set of simplices so that:
1. Every face of a simplex from SC is also in SC
2. σ1 ∩ σ2 for any σ1,σ2 ∈ SC is a face of both σ1 and σ2

Σℓ is the collecঞon of ℓ-simplices σℓ, then

SCk = (Σℓ)
k
ℓ=0 = (Σ0,Σ1, · · · ,Σk)

The cardinality of Σℓ is nℓ = |Σℓ|

Remark.
1. A graph is: G = SC1 = (V,E) = (Σ0,Σ1)

2. We mostly focus on SC2 = (V,E, T) = (Σ0,Σ1,Σ2)

1
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Not an SC
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An SC
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SIMPLICIAL AND CUBICAL COMPLEXES — II

CLIQUE COMPLEX

A clique complex of a graph G = (V,E) is a simplicial complex SCk = (Σ0, · · · ,Σk), with
the ℓ-th simplex set Σℓ being the set of all ℓ-cliques
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Graph G

1
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NOT a clique complex of G

1
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3
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5

6

A clique complex of G

Remark. The clique complex built from δ-radius graph := Vietoris-Rips (VR) complex

CUBICAL COMPLEX (INFORMAL)

A cubical complex CBk = (K0, · · · ,Kk) is a collecঞon of sets Kℓ of ℓ-cubes

Remark. CBk is widely used for image datasets
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AN SC2 DEFINES (CO-)BOUNDARY MATRICES B1 AND B2
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B1 =

#
of

ro
w
=
n

0



# of col = n1︷ ︸︸ ︷
(1, 2) (1, 3) (1, 4) (2, 3) (3, 4) (3, 5) (5, 6) (5, 8) (6, 7) (7, 8) (9, 10)

1 1 1 1 0 0 0 0 0 0 0 0
2 -1 0 0 1 0 0 0 0 0 0 0
3 0 -1 0 -1 1 1 0 0 0 0 0
4 0 0 -1 0 -1 0 0 0 0 0 0
5 0 0 0 0 0 -1 1 1 0 0 0
6 0 0 0 0 0 0 -1 0 1 0 0
7 0 0 0 0 0 0 0 0 -1 1 0
8 0 0 0 0 0 0 0 -1 0 -1 0
9 0 0 0 0 0 0 0 0 0 0 1
10 0 0 0 0 0 0 0 0 0 0 -1

B2 =

#
of

ro
w
=
n

1



# of col = n2︷ ︸︸ ︷
(1, 2, 3)

(1, 2) 1
(1, 3) -1
(1, 4) 0
(2, 3) 1
(3, 4) 0
(3, 5) 0
(5, 6) 0
(5, 8) 0
(6, 7) 0
(7, 8) 0



k-COCHAIN

An edge flow (1-cochain) ω1 is a flow on edges (1-simplex) of SC/CB

ω1 =
∑

iω1,iei, where ei ∈ E

Can further denote by ω1 = (ω1,1, · · · ,ω1,n1)
⊤ ∈ Rn1

▶ Set of ± weights on edges

Space of ω (:= C1) is isomorphic to Rn1

Example. ω1 = 7 · [1, 2] + 2 · [3, 5] + (−1) · [1, 4]

ω1 =

[
7 0 −1 0 0 2

[1, 2] [1, 3] [1, 4] [2, 3] [3, 4] [3, 5]

]
∈ R6
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2

ωk := HIGHER-ORDER GENERALIZATION OF ω1

A k-cochain ωk is a flow on k-simplex of SC/CB
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BACKUP SLIDES

THE DISCRETE k-LAPLACIAN



HIGHER-ORDER LAPLACIANS

k-LAPLACIANS

Unnormalized k-Laplacian [Eckmann, 1944]: Lk = B⊤
kBk︸ ︷︷ ︸
Ldown
k

+Bk+1B
⊤
k+1︸ ︷︷ ︸

L
up
k

;

Random-walk k-Laplacian [Horak and Jost, 2013]: Lk = B⊤
kW

−1
k−1BkWk︸ ︷︷ ︸
Ldown

k

+W−1
1 B2W2B

⊤
2︸ ︷︷ ︸

L
up
k

;

Symmetrized k-Laplacian [Schaub et al., 2020]: Ls
k = A⊤

kAk︸ ︷︷ ︸
Ls,down

k

+Ak+1A
⊤
k+1︸ ︷︷ ︸

L
s,up
k

.

Aℓ := W
−1/2
ℓ−1BℓW

1/2
ℓ (for ℓ = k,k+ 1) is the normalized boundary matrix

Ls
k = W

1/2
k LkW

−1/2
k has the same spectrum as Lk [Schaub et al., 2020]



THE UP- AND DOWN-1-LAPLACIAN

Ldown
1 =

B⊤
1 W−1

0 B1 W1

n1 ×n0 n0 ×n0 n0 ×n1 n1 ×n1

∈ Rn1×n1

L
up
1 =

W−1
1 B2 W2 B⊤

2

n1 ×n1 n1 ×n2 n2 ×n2 n2 ×n1

∈ Rn1×n1



k-LAPLACIANS ARE THE EXTENSIONS OF GRAPH LAPLACIANS

L0 = B1B
⊤
1 is the unnormalized graph Laplacian:

L0 = B1B
⊤
1 =


deg(i) if i = j

−1 if i ∼ j

0 otherwise
= D−A

By leমng W0 = diag(|B1|W11) = diag
([∑

jwij

]n
i=1

)
= D...

L0 = W−1
0 B1W1B

⊤
1 is the random-walk graph Laplacian:

L0 = D−1B1W1B
⊤
1 =


1 if i = j

− 1
deg(i) if i ̸= j

0 otherwise
= I−D−1A
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BACKUP SLIDES

HODGE LAPLACIAN, DIFFERENTIAL GEOMETRY, AND TOPOLOGY



k-HOMOLOGY SPACE

HARMONIC VECTOR SPACE

The harmonic vector spaceHk ⊆ Rn1 is a subspace of the k-cochain defined as the null
of Lk

Hk := {ω ∈ Rnk : Lkω = 0}.

Remark. Similar definiঞon works for Lk or Ls
k, as well as its conঞnuous counterpart

(using k-differenঞal forms and ∆k)

The k-th homology space Hk := ker(Bk)/im(Bk+1)

Hk
∼= Hk [Lim, 2020, Warner, 2013]

The k-th Beম number βk := dim(Hk) = dim(ker(Lk))
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CONNECTION TO THE CONTINUOUS OPERATORS

(Finite samples from M) (Want to approximate)
Discrete Conঞnuous

Simplicial/Cubical complex SCℓ (or CBℓ) Manifold M

k-cochain ωk k-form ζk
Boundary matrix Bk Codifferenঞal operator δk
Coboundary matrix B⊤

k Exterior derivaঞve dk−1
Discrete k-Laplacian Lk Laplace-de Rham operator ∆k

k-homology space Hk ⊆ Rnk k-homology group Hk(M, R)



BACKUP SLIDES

BOUNDARY MATRICES



BOUNDARY MATRIX

A boundary matrix Bk ∈ Rnk×nk−1 maps a k-simplex to its (k− 1)-th faces
With [x,y, z] ∈ T , B1 and B2 are defined as:

[B1]a,xy =


1 if a = x

−1 if a = y

0 otherwise
; [B2]ab,xyz =


1 if [a,b] ∈ {[x,y], [y, z]}
−1 if [a,b] = [x, z]
0 otherwise

Definiঞon for Bk with k ⩾ 2 is in Appendix.

A coboundary matrix B⊤
k (adjoint of Bk) maps (k− 1)-simplex to its k-th cofaces

Remark. Bk is defined on an SCℓ or a CBℓ
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BOUNDARY OPERATORS



LEVI-CIVITA NOTATION & PERMUTATION PARITY

DEFINITION S1 (PERMUTATION PARITY)

Given a finite set {j0, j1, · · · , jk} with k ⩾ 1 and jℓ < jm if ℓ < m, the parity of a
permutaঞon σ({j0, · · · , jk}) = {i0, i1, · · · , ik} is defined to be

ϵi0,··· ,ik = −1N(σ) (S1)

Here N(σ) is the inversion number of σ. The inversion number is the cardinality of the
inversion set, i.e., N(σ) = #{(ℓ,m) : iℓ > im if ℓ < m}. We say σ is an even permutaঞon
if ϵi0,··· ,ik = 1 and an odd permutaঞon otherwise.

Remark. The Levi-Civita symbol for k = 1 (le[) and 2 (right) is

ϵij =

{
+1 if (i, j) = (1, 2)
−1 if (i, j) = (2, 1)

; ϵijk =

{
+1 if (i, j,k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 if (i, j,k) ∈ {(3, 2, 1), (1, 3, 2), (2, 1, 3)}



BOUNDARY MAP FOR k-COCHAIN

DEFINITION S2 (BOUNDARY MAP & BOUNDARY MATRIX)

Let i0 · · · îj · · · ik := i0, · · · , ij−1, ij+1, · · · , ik, and i0 · · · ǐj · · · ik denote ij insert into
i0, · · · , ik with proper order, one can define a boundary map (operator) Bk : Ck → Ck−1
which maps a simplex to its face by

Bk([i0, · · · , ik]) =
k∑

j=0
(−1)j[i0 · · · îj · · · ik] =

k∑
j=0

ϵ
ij,i0···îj···ik [i0 · · · îj · · · ik] (S2)

The corresponding boundary matrix Bk ∈ {0,±1}nk−1×nk can be defined as follow

(Bk)σk−1,σk

{
ϵ
ij,i0···îj···ik if σk = [i0, · · · , ik], σk−1 = [i0 · · · îj · · · ik]

0 otherwise.
(S3)

(Bk)σk−1,σk
represents the orientaঞon of σk−1 as a face of σk, or equals 0 when the

two are not adjacent.
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ADDITIONAL DEFINITIONS



NEIGHBORHOOD GRAPHS

DEFINITION S3 (NEIGHBORHOOD GRAPHS)

δ-radius graph: E = {(i, j) ∈ V2 : ∥xi − xj∥2 ⩽ δ};
k-NN graph: E = {(i, j) ∈ V2 : ∥xi − xj∥2 ⩽ max

(
ρk(xi), ρk(xj)

)
}; and

δ-CkNN graph [Berry and Sauer, 2019]: E =

{
(i, j) ∈ V2 :

∥xi − xj∥2√
ρk(xi)ρk(xj)

⩽ δ

}
.



k-COCHAIN

A flow (k-cochain) ωk on an SC/CB can be described by a linear combinaঞon of
k-simplices:

ωk =
∑

iωk,iσ
k
i , where σk

i ∈ Σk

Can further denote by ωk = (ωk,1, · · · ,ωk,nk
)⊤ ∈ Rnk

Space of ωk is Ck, which is isomorphic to Rnk

Example. The flow on the toy SC2 isω1 = 7 · [1, 2]+2 · [3, 5]+
(−1) · [1, 4], or

ω1 =

[
7 0 −1 0 0 2

[1, 2] [1, 3] [1, 4] [2, 3] [3, 4] [3, 5]

]
∈ R6

1
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5
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2
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1

2

3

4

5

7

1

2



GRADIENT, CURL, AND HARMONIC COMPONENTS

p̂0 = argmin
p0∈Rn0

∥W1/2
1 B⊤

1 p0 −ω∥2;

p̂2 = argmin
p2∈Rn2

∥W−1/2
1 B⊤

2 p2 −ω∥2;

ĥ = ω−W
1/2
1 B⊤

1 p̂0︸ ︷︷ ︸
gradient

−W
−1/2
1 B2p̂2︸ ︷︷ ︸
curl

.



BACKUP SLIDES

APPROXIMATE 1-COCHAIN & UNDERLYING VECTOR FIELDS



LINEAR INTERPOLATION OF 1-COCHAIN

Let e = [i, j], since ωe =
∫1

0 ζ(γ(t))γ
′(t)dt, if given only the vertex-wise vector field

ζ(xi) = f(xi) ∈ RD, one can approximate the geodesic by γ(t) ≈ xi + (xj − xi)t and
the vector field along γ by f(γ(t)) ≈ f(xi) + (f(xj) − f(xi))t, one has,

ωe =

∫1

0
f⊤(γ(t))γ ′(t)dt ≈

∫1

0

[
f(xi) + (f(xj) − f(xi))t

]⊤
(xj − xi)dt

=
1
2(f(xi) + f(xj))

⊤(xj − xi)

(S4)

Note that (S4) can be wri�en in a more concise form using boundary operator B1. Let
F ∈ Rn×D with fi = Fi,: = f(xi). Since [|B⊤

1 |F][i,j] = f(xi) + f(xj), and
[−B⊤

1 X][i,j] = xj − xi. Therefore,

ω = −
1
2 diag(B⊤

1 XF⊤|B1|)
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OBTAINING VERTEX-WISE VECTOR FIELD FROM 1-COCHAIN

Let XE = −B⊤
1 X (so [XE][i,j] = xj − xi) and define χE such that [χE][i,j] = ∥xj − xi∥22.

Given the 1-cochain ω, one can solve the following D least square problems to
esঞmate the vector field F on each point xi.

v̂ℓ = argmin
vℓ∈Rn

{∥∥∥|B⊤
1 |vℓ − ([XE]:,ℓ ⊘ χE) ◦ω

∥∥∥2

2

}
∀ ℓ = 1, · · · ,D (S5)

◦, ⊘ is Hadamard product and division, respecঞvely. The soluঞon to the ℓ-th least square
problem corresponds to esঞmate fℓ(xi) from 1

2(fℓ(xi) + fℓ(xj)). I.e., (inner product)

1
2(f

∥
ℓ(xi) + f

∥
ℓ(xj)) = [([XE]:,ℓ ⊘ χE) ◦ω][i,j] =

(xj,ℓ − xi,ℓ)ωij

∥xj − xi∥2

The esঞmated vector field F̂ is

F̂ =

 v̂1 v̂2 . . . v̂D

 ∈ Rn×D
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BACKUP SLIDES

APPLICATIONS



HOMOLOGOUS LOOP DETECTION—THEORY

PROPOSITION S4 (INDUCED DIGRAPH FROM zi)

Let zi for i = 1, · · · ,β1 be the i-th homology basis that
corresponds to the i-th homology class and Gi be the induced
digraph of the flow zi. Then for every i = 1, · · · ,β1,
1. there exist at least one cycle in the digraph Gi such that

every vertex v ∈ V can traverse back to itself (reachable);
2. the corresponding cycle will enclose at least one homology

class (no short-circuiঞng).

Sketch of proof.
Reachable: harmonic flow is divergence-free
no short-circuiঞng: from Stoke’s theorem and Poincaré
Lemma [Lee, 2013]

■

Example.

zi =


7 [1, 2]
2 [1, 3]
−1 [1, 4]
3 [2, 3]
−5 [3, 4]
2 [3, 5]

 ∈ R6

w�

Gi =
1

2

3

4

5



SPECTRAL HOMOLOGOUS LOOP DETECTION FROM Z

Algorithm S1: SpectralLoopFind
Input: Z = [z1, · · · , zβ1 ], V , E, edge distance d

1 for i = 1, · · · ,β1 do
2 E+i ← {(s, t) : (s, t) ∈ E and [zi](s,t) > 0}
3 E−i ← {(t, s) : (s, t) ∈ E and [zi](s,t) < 0}
4 τ← Percenঞle(|zi|, 1 − 1/β1)

5 E×i ← {e ∈ E+i ∪ E
−
i : |[zi]e| < τ}

6 Ei ← E+i ∪ E
−
i \E×i

7 Gi ← (V,Ei), with weight of e ∈ Ei being [d]e

8 dmin = inf
9 for e = (t, s0) ∈ Ei do

10 P∗(:= [s0, s1, · · · , t]),d∗ ← Dijkstra(Gi, from=s0, to=t)
11 if d∗ < dmin then
12 Ci ← [t, s0, s1, · · · , t]

Return: C1, · · · ,Cβ1

Build induced digraph from zi:

zi =


7 [1, 2]
2 [1, 3]
−1 [1, 4]
3 [2, 3]
−5 [3, 4]
2 [3, 5]

 ∈ R6

w�

Gi =
1

2

3

4

5
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Thresholding zi:

z1
z2

z3

E×i E+
i ∪ E−

i \E×i

Each homology class has
≈ n1/β1 edges



SPECTRAL HOMOLOGOUS LOOP DETECTION FROM Z

Algorithm S1: SpectralLoopFind
Input: Z = [z1, · · · , zβ1 ], V , E, edge distance d

1 for i = 1, · · · ,β1 do
2 E+i ← {(s, t) : (s, t) ∈ E and [zi](s,t) > 0}
3 E−i ← {(t, s) : (s, t) ∈ E and [zi](s,t) < 0}
4 τ← Percenঞle(|zi|, 1 − 1/β1)

5 E×i ← {e ∈ E+i ∪ E
−
i : |[zi]e| < τ}

6 Ei ← E+i ∪ E
−
i \E×i

7 Gi ← (V,Ei), with weight of e ∈ Ei being [d]e

8 dmin = inf
9 for e = (t, s0) ∈ Ei do

10 P∗(:= [s0, s1, · · · , t]),d∗ ← Dijkstra(Gi, from=s0, to=t)
11 if d∗ < dmin then
12 Ci ← [t, s0, s1, · · · , t]

Return: C1, · · · ,Cβ1

Shortest “loop” with Dijkstra:

Dijkstra will find a loop for
every v ∈ V (reachable)
Every loop obtained is valid
(no short-circuiঞng)



CLASSIFYING ANY 2-DIMENSIONAL MANIFOLD

β1(torus) = β1(two disjoint holes) = 2
Not possible to disঞnguish these two manifolds only
by rank informaঞon
From Theorem 1, the embedding of S1♯S1 can be
(roughly) factorized into two “lines”
Any loop in T2 is a convex combinaঞon of the two
homology classes

▶ Intrinsic dimension = 2

Remark. Can categorize the manifold M from Z

With the classificaঞon theorem of surfaces
[Armstrong, 2013]

Two disjoint holes: S1]S1

Torus: T2

PROPOSITION S5 (SHAPE OF THE EMBEDDING Z OF A FLAT m-TORUS Tm)

The envelope of the first homology embedding (1-cochain) induced by the harmonic 1-form
on the flat m-torus Tm is an m-dimensional ellipsoid.



OTHER APPLICATIONS

Visualize the basis of harmonic vector fields:

1st
coordinate

Y

2nd
coordinate 3rd

coordinate 4th
coordinate

Z

Higher-order simplex clustering [Ebli and Spreemann, 2019]:
Theorem 1 supports the use of subspace clustering algorithm in this framework



BACKUP SLIDES

ASSUMPTIONS AND THEOREMS



NOTATIONS

Disjoint manifold Mi Connected manifold M

Simplicial complex ŜC(i)
k = (Σ̂

(i)
0 , · · · , Σ̂(i)

k ) SCk = (Σ0, · · · ,Σk)

k-Laplacian L̂
(ii)

k Lk

Homology space Hk(Mi) Hk(M)
k-th Beম number βk(Mi) βk(M)

Homology embedding Ŷ Y

Remark.
Notaঞon with ˆ := disjoint manifolds

ŜC =
∪κ

i=1 ŜC(i) ̸= SC



DATA SAMPLED FROM A DECOMPOSIBLE MANIFOLD

ASSUMPTION 1

1. Hk(SC) (discrete) is isomorphic to the homology group Hk(M, R) (conࢼnuous)
2. Assume that M = M1♯ · · · ♯Mκ and the isomorphic condiࢼon holds for everyMi, i.e.,

Hk(ŜC(i)
) ∼= Hk(Mi) for i = 1, · · · , κ.

Remark.
1. Any procedure for construcঞng SC or weight funcঞon for Lk is acceptable
2. Manifold M can be decomposed

▶ Mostly true except for the known hard case of 4-manifolds



TOPOLOGY IS PRESERVED DURING CONNECTED SUM

ASSUMPTION 2

Denote the set of destroyed and created k-simplexes during connected sum byDk and Ck;
Nk = Σk\Ck = Σ̂k\Dk is the set of non-intersecࢼng simplexes. Then
1. no k-homology class is created during the connected sum process, i.e.,

βk(SC) =
κ∑

i=1
βk(ŜC(i)

); and

2. The minimum eigenvalues of LC,C
k and L̂

D,D
k are bounded away from the eigengaps δi

of L(ii)
k , i.e., min{λmin(L

C,C
k ), λmin(L̂

D,D
k )}≫ min{δ1, · · · , δκ}.

Remark.
1. If dim(M) > k, then Hk(M1♯M2) ∼= Hk(M1)⊕Hk(M2) [Lee, 2013]
2. E.g., it happens when Ck and Dk are cliques contained in small balls



SMALL PERTURBATIONS IN THE (k+ 1)-SIMPLEX SET

ASSUMPTION 3 (INFORMAL, SEE ALSO ASSUMPTION 6.4 IN THE THESIS)

Let w̃k = |Bk+1[Nk,Nk+1]|wk+1, w̃k−1 = |Bk[:,Nk]|w̃k. For ℓ = k or k− 1, we have

|Ck| is small: max
σ∈Nℓ

{wℓ(σ)/w̃ℓ(σ) − 1} ⩽ ϵℓ;

|Dk| is small: max
σ∈Nℓ

{ŵℓ(σ)/w̃ℓ(σ) − 1} ⩽ ϵℓ; and

The net effect is small: max
σ∈Nℓ

{|wℓ(σ)/ŵℓ(σ) − 1|} ⩽ ϵ ′
ℓ.

1. Not too many triangles are created/destroyed during connected sum
2. Sparsely connected manifold

▶ Density in the connected sum region should be smaller than other regions

3. Empirically, the perturbaঞon is small even when M is not sparsely connected



SUBSPACE PERTURBATION: SKETCH OF PROOF OF THEOREM 1

Sketch of proof. The proof (in Supplement) is based on

1. Bound the error (DiffLup
k and DiffLdown

k terms) between Lk and L̂k with L̃k;
▶ L̃k := the Laplacian a[er removing the k-simplices in both Ck and Dk during

connected sum

2. Use of a variant of the Davis-Kahan theorem [Yu et al., 2015] (the spectral norm
∥ · ∥); and

3. Bound the spectral norm of Lk for a simplicial complex [Horak and Jost, 2013]

∥Lk∥2 ⩽ k+ 2.

▶ Any (k+ 1)-simplex has (k+ 2) faces

■



SUBSPACE PERTURBATION FOR CUBICAL COMPLEX

PROPOSITION S6

Given an up k-Laplacian L
up
k = Ak+1A

⊤
k+1 with Ak+1 = W

−1/2
k Bk+1W

1/2
k+1 built from a

cubical complex, we have
∥Lup

k ∥2 ⩽ λk = 2k+ 2.

Sketch of proof. The (2k+ 2) term comes from the fact that a (k+ 1)-cube has (2k+ 2)
faces. The rest of the proof follows from [Horak and Jost, 2013]. ■

COROLLARY S7 (Lk BUILT FROM A CUBICAL COMPLEX)

Under Assumpࢼons 2–3 with DiffLup
k as well as DiffLdown

k defined in Theorem 1 and
λk = 2k+ 2, there exists a unitary matrixO such that (1) holds.
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