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Improving Tail Performance for Fairness
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A normally trained model usually
has very high loss on a fraction of
the data.

Low Tail Performance



Improving Tail Performance for Fairness

The tail usually corresponds to
certain minority groups.
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Improving Tail Performance for Fairness

=== Normal Model
=== Fair Model
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CVaR Loss

—Norrlnal Model
—Fair Model a-CVaR Loss: Average loss over
the worst a fraction of the data.
B
9 Can we minimize the a-CVaR
loss to train a fair model?
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Overview

* For classification tasks, if we use deterministic models, then CVaR
is almost equivalent to ERM.

* We propose to circumvent this problem by using ensemble
models, and specifically we train ensemble models with Boosting.

 We find that for ensemble models, CVaR is equivalent to LPBoost,
a variant of Boosting. So we design a framework based on this.
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Classification: Zero-one Loss

Proposition: Let L%/1(f) be the
average zero-one loss, and

CVaR(O)/l(f) be the ¢-CVaR zero-
one loss, then

Zero-one Loss

cVaRY* (f) = min{1, L1 (f)/a}
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Classification: Zero-one Loss

Zero-one Loss
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cVaR”* (f) = min{1, L1 (f)/a}

CVaR loss is non-decreasing with
average loss.

Minimizing the CVaR loss is
equivalent to minimizing the
average loss (ERM).



f(x) is a distribution
over Y instead of a
single value y

Randomized Model

=== Deterministic Model
=== Randomized Model

The zero-one loss of a
randomized model is a real value
in [0,1] instead of binary.

Thus, it breaks the previous
connection between the CVaR
loss and the average loss.

Zero-one Loss
o
(@)
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The General Boosting Framework

¢ Training set: {(xli 3’1); e (xn; yn)}
e Weak Learner L (e.g. ERM)

A, is the unit

simplex in R™
e For each round t:

1. Pick a sample weight vector wt = (wf, ...,w}) € A,

2. Feed the sample weights and the training set to L and get a base
classifier f¢

« After T rounds, pick a model weight vector A = (44, ..., A7) € Ay
and output the ensemble model F = (f1, ..., T, 1)




Inference with the Ensemble Model

 Given an ensemble model F = (f1, ..., fT,1) and an input x:

1. Randomly sample an f¢ according to the distribution A
2. Returny = ft(x)

Loss function

* Expected loss of F on sample (x,y): 29, y)

T
LFE),Y) = ) AL(FH),)
t=1




Extend Boosting to Train Fair Models

Boosting for Accuracy (Original)

We have a weak learner L that
outputs models with accuracy at
least 50% + & for some d > 0

Weak Learner — Strong Learner

Boosting for Fairness

We have an unfair learner L that
outputs models with high average
accuracy but low tail performance

The learner is strong but unfair

Unfair Learner — Fair Learner
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a-LPBoost!1]

Let £ = £(f(x;),y;). Atround t + 1, solve the following linear program to pick the
sample weight vector w = (w; ..., wy,,):

Primal Dual
t_ .
ps —nﬁXp— i=1 i Vo = 0L
st. A €A, s.t. Xis 1Wl€$>1—¥ , Vs € [t]
weA,w; < —
¢1—0¢L>p_1+25 1’165 “an

[1] Demiriz et al. Linear Programming Boosting via Column
generation. Machine Learning, 46(1):225-254, 2002.




vector

Model weight

Strong duality:
pL =7V

a-LPBoost

Let £ = £(f(x;),y;). Atround t + 1, solve the following linear p

' Find h that
sample weight vector w = (wq ..., w,): Ind w suc

the weighted loss

Primal Dual of every previous
model is large
t . .
_ ! = min
pi = max p i=1 i Vo = 0L
s.t. A € A s.t. Yl wif; =1 —y,Vs € [t]

WEAn'WiSE

Y;i=20,¢Y; =2p—-1 +Z§:1/15£§

Weighted

loss of f*
w.r.t.w

Sample
weights



a-LPBoost is Equivalent to a-CVaR

 The primal is computing the A that minimizes the
a-CVaR zero-one loss of the ensemble model that
consists of f1, ..., ft!

We can minimize the
a-CVaR zero-one loss
by maximizing y.!

e Theorem: For any fl, ...,ft, we have

t __ t __ o . 0/1
P =V =1 /rlrélArz CVaR," ™ (F)

where F = (f1,..., % 1) is the ensemble model.




Using LPBoost to minimize CVaR Loss

Goal: Maximize y! How to increase y?
vyl = miny By training a new model ft*1
ey such that its accuracy w.r.t.
st.y=>1-—Y% w3, Vs € [t] sample weight w is high.
1
W€ An, Wi S an Repeat this process until there is

no w such that y is small.

y is the maximum
accuracy of f1, ..., f¢
w.r.t. sample weight w




Using LPBoost to minimize CVaR Loss

- 1 1
e Initially, w! = (—, ...,—)

n n

Solve the optimization
problems with tools
such as MOSEK.

e For eachroundt:

* Feed the w! to the unfair learner £ to get f*
* Solve the dual problem of a-LPBoost to get wt*1

 Stopif yI*! > y, for some stopping criteria y, € (0,1)

e Solve the primal problem of a-LPBoost to get 4
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Assumption on the Unfair Learner

e We have access to an unfair learner L such that:

* Given any sample weight vector w = (wy, ..., wy,),
the learner can output a model f such that its
average loss w.r.t. wis at most g, i.e.

> Wil (F (), v < g
=1

* g € (0,1) is called the guarantee of the learner



The Framework

e Foreachround t:

Pick a sample weight vector wt = (Wi, ...,w}) € A,

2. Feed the sample weights and the training set to the unfair
learner £ and get a base classifier ft whose weighted average
zero-one loss w.r.t. wt is at most g

* After T rounds, pick a model weight vector A = (14, ..., A7) €
Ar and output the ensemble model F = (f1, ..., f1, 1)



Convergence Rate of Regularized LPBoost!?]

* If every sample weight vector wt*1 is picked by solving
the regularized a-LPBoost dual problem:

min )/—lH(W)
w B

1
s.L. rowiti =1—y,Vs € [t]; WE Ay, w; < —
where H(w) = — ;-1 w; log w; is the entropy function There exists a

and f = max (glogi,%), then CVaRg/l(F) <g+6if

- {321 18}_0(11 1)
~ ez sl T T\

[2] Warmuth et al. Entropy Regularized LPBoost. In International Conference
on Algorithmic Learning Theory, pages 256-271, Springer, 2008.

counterexample where
unregularized LPBoost

takes T = () (i) to

converge




a-AdalLPBoost

* Pick the sample weight vector w! with AdaBoost and
the final model weight vector A by solving the a-

LPBoost primal problem.

 AdaBoost: Wit+1 x exp(n 25:1 ff)

* Advantages:

* Easier to compute wt: No need to solve a linear program

e Easier to adjust a: Only A depends on




Convergence Rate of a-AdalLPBoost

8logn

* For a-AdalLPBoost, if we setn = - ,then
CVaRy (F) < g + 8 with T = 0 (<£7)

* Regularization is not required




Experiments

L S\ — EAM * Conducted on 4 datasets
§ A Regularized a-LPBoost
0 %8\~ a-AdaLPBoost  Run a-AdalLPBoost with
o . .
S 0.6. & different & and compare with
Q) .
o ERM and regularized LPBoost
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Results on CIFAR-10




Experiments

ST\ — ERm * When a is small, a-AdaLPBoost
S aal o Regularized a-LPBoost achieves lower a-CVaR zero-one
% ' \;ﬁ= a-AdalPBoost loss than ERM
© 0.6,
= 0.6
- * The performance of a-AdaLPBoost
© ] . .
507 is close to regularized LPBoost
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