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® Least-Square: A stream of i.i.d samples (x,-,y,-),-T:1 from an unknown distribution
p. We want to minimize the population risk:

R(0) = 5B, (0,5}~ y)*,

where 0, x € H, (possibly infinite dimensional) Hilbert space and y € R.
e We study the SGD algorithm:

Orr1 =0 — 7 (<9t7Xt>H - yt)Xt

® Aim: bound the excess risk. Denote 6, := argmingc4, R(6), we bound the
excess risk of the estimator given by the T-th iterate:

ER(07) — R(6,)
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Noise = Additive (model noise) + Multiplicative (SGD sampling noise)
Additive noise forces to use variance reduction techniques for SGD to converge.

® The noiseless setting: We make the hypothesis that the model is perfect, i.e.,
there is no additive noise, i.e there exists a perfect regressor 6,

(0, x) =y a.s.

Last iterate of SGD should converge in this model !
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® Covariance The covariance operator on H:
H=E,|[x®x].

The non-strongly convex setting corresponds to the smallest eigen value being
arbitrarily small and close to 0.
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Recall, Risk : R(#) = %EP“Q,X) —Y)?, SGD: 11 = 0r — v ((0r, x¢) — ye) Xe.

IR st E[[x]° o' | <RH and |6y < +o0 (1)

Main Result

For T > 2, if we set v = (4RIn(T))~!, we have the following bound for the
expected risk of the estimator given by the Tt iterate of SGD:

BR(97) <3 R [0, " @)
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With further refinements over the spectrum of co-variance i.e. capacity condition
30> 0,Ry >0 5.t E[(x,H "x)x"| < R.H (3)

and regularity of optimum i.e. source condition like

345>-1,C3>0s.t. Cg = |[H 20,3 (4)
1
For T > 3, where < (3264Ry) " and &, = Z o We have
n>1
1+8\"? ¢
BRI <2(~2) @
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Conclusion

Contributions:
® No additive noise implies no variance reduction. Last iterate of the constant
step-size SGD converges!
® A new Lyapunov technique to control the bias error in standard least square

analysis.

Perspectives:
® Insights into optimization of general convex (even non-convex) overparamaterized
models.
e A simple and effective setting for understanding interplay between momentum
with stochastic/multiplicative noise.



